Уникастный адрес 0:0:0:0:0:0:0:1 называется адресом обратной связи. Он может использоваться для посылки IPv6 дейтограмм самому себе. Его нельзя использовать в качестве идентификатора интерфейса.
Адрес обратной связи не должен применяться в качестве адреса отправителя в IPv6 дейтограммах, которые посылаются за пределы узла. IPv6 дейтограмма с адресом обратной связи в качестве адреса места назначения не может быть послана за пределы узла.
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
В конце 1992 года сообщество Интернет для решения проблем адресного пространства и ряда смежных задач разработало три проекта протоколов: “TCP and UDP with Bigger Addresses (TUBA)”; “Common Architecture for the Internet (CatnIP)” и “Simple Internet Protocol Plus (SIPP) [смотри “Протоколы и ресурсы Интернет” Семенов Ю.А., Радио и связь, М 1995]. После анализа всех этих предложений был принят новый протокол IPv6 с IP-адресами в 128 бит вместо 32 для IPv4. Внедрение этого нового протокола представляет отдельную серьезную проблему, так как этот процесс не предполагает замены всего программного обеспечения во всем мире одновременно.
Адресное пространство IPv6 будет распределяться IANA(Internet Assigned Numbers Authority - комиссия по стандартным числам в Интернет [RFC-1881]). В качестве советников будут выступать IAB (internet architecture board - совет по архитектуре Интернет) и IESG (Internet Engineering Steering Group - инженерная группа управления Интернет).
IANA будет делегировать права выдачи IP-адресов региональным сервис-провайдерам, субрегиональным структурам и организациям. Отдельные лица и организации могут получить адреса непосредственно от регионального распределителя или сервис провайдера.
Передача адресного пространства от IANA не является необратимым. Если по мнению IANA распорядитель адресного пространства допустил серьезные ошибки, IANA может аннулировать выполненное ранее выделение.
IANA в этом случае должна сделать все возможное, чтобы не отзывать адреса, находящиеся в активном использовании, за исключением случаев, когда это диктуется техническими соображениями.
Оплата за распределение адресов должна использоваться исключительно на деятельность, непосредственно связанную с выделением адресов, поддержанием соответствующих баз данных и т.д. Адресное пространство само по себе не должно стоить ничего.
Следует избегать монополизации и любых злоупотреблений при распределении IP-v6 адресов. IANA разработает план первичного распределения IPv6 адресов, включая автоматическое выделение адресов индивидуальным пользователям.
Этот атрибут представляет собой список из нуля или более именованных лексем, соотнесенный данному сообщению. Флаг устанавливается путем его добавления к этому списку и обнуляется путем его удаления. Существует два типа флагов в IMAP 4.1. Флаг может быть постоянным или действующим только на время данной сессии.
Системным флагом является флаг, чье имя определено в данной спецификации. Все системные флаги начинаются с символа "\". Некоторые системные флаги (\deleted и \seen) имеют специальную семантику, заданную вне рамок данного документа. В настоящее время определены следующие системные флаги:
\seen | Сообщение прочитано |
\answered | На сообщение послан ответ |
\flagged | Сообщение "помечено" как срочное, требующее особого внимания |
\deleted | Сообщение помечено как стертое для последующего удаления посредством expunge |
\draft | Сообщения не является законченным (помечено, как проект). |
\recent | Сообщение только что положено в почтовый ящик. Эта сессия является первой, где фигурирует данное сообщение; для последующих сессий это сообщение не будет иметь флага \recent. Флаг не может быть изменен клиентом. |
Если невозможно определить, является ли эта сессия первой для данного сообщения, его следует считать относящимся к текущей сессии. Ключевое слово определяется реализацией сервера. Ключевые слова не начинаются с символа "\". Серверы могут позволять клиенту создавать новые ключевые слова в почтовом ящике. Постоянные флаги клиент может устанавливать для данного сообщения или удалять на постоянной основе; таким образом, последующая сессия может воспользоваться новыми значениями флагов.
Замечание: Системный флаг \recent имеет статус флага сессии. Флаг \recent не может использоваться в качестве аргумента команды store, и по этой причине не может быть изменен вообще.
Внутренняя дата и время сообщения на сервере. Это не та дата и время, которые указаны в заголовке [RFC-822], а время и дата получения сообщения. В случае доставки сообщения посредством протокола , это должна быть дата и время доставки конечному адресату. В случае сообщений, доставленных командой IMAP 4.1 copy, это должны быть внутренняя дата и время отправителя сообщения. В случае доставки сообщения командой IMAP 4.1 append, это должна быть дата и время, заданные в описании команды append.
Атрибут размера сообщения определяет число октетов в сообщении (рассмотрен в документе [RFC-822]). Атрибут структуры конверта сообщения соответствует требованиям документа [RFC-822]. Атрибут структуры тела сообщения несет в себе информацию о структуре сообщения в соответствии с регламентациями [MIME-IMB]. Кроме доставки текстового сообщения, как это описано в RFC-822, IMAP 4.1 позволяет осуществлять передачу части текста. Можно отдельно доставить заголовок и тело сообщения или даже часть тела сообщения.
Каждому сообщению ставится в соответствие 32-битовый код, который при использовании совместно с уникальным идентификатором образует 64-битовую последовательность, гарантирующую однозначную идентификацию сообщения в почтовом ящике. Сообщения, приходящие позднее имеют больший код UID, чем полученные ранее.
В отличие от порядкового номера сообщения, уникальные идентификаторы не образуют упорядоченной последовательности, но они работают и за пределами текущей сессии. Это позволяет осуществлять ссылки на сообщение в случае обрыва сессии [IMAP-DISC].
UID ассоциируется с почтовым ящиком и посылается в виде кода uidvalidity отклика (ok) на фазе выбора почтового ящика. Если UID из предыдущей сессии по какой-то причине не может быть использован, UID должен быть инкрементирован.
Замечание: UID для данного почтового ящика должен всегда изменяться монотонно. Если порядок записей изменен вне рамок IMAP, необходимо перегенерировать UID для данного почтового ящика, так как порядок старых значений UID в этом случае уже не будет монотонным.
Еще одной причиной не сохранения UID может служить стирание старого и создание нового почтового ящика с тем же именем. Так как имя почтового ящика не изменилось, клиент может не знать об этом и пытаться использовать старые UID. Хорошим значением UID можно считать 32-битное представление даты и времени создания почтового ящика. Вполне приемлемо и значение 1, если имеется гарантия, что это значение никогда не будет использовано повторно, даже в случае стирания и создания нового почтового ящика с тем же именем.
UID сообщения не должно изменяться в пределах сессии, его не следует изменять и от сессии к сессии. Однако если невозможно сохранить UID сообщения в последующей сессии, каждая следующая сессия должна иметь новый уникальный код идентификатора, который больше чем любой UID использованный ранее.
Атрибут порядкового номера сообщения
Этот атрибут определяет порядковый номер сообщения в почтовом ящике, начиная с 1. Последующее сообщение всегда имеет значение этого атрибута на 1 большее, чем у предшествующего.
Допускается изменение порядкового номера сообщения на протяжении сессии. Например, когда сообщение удаляется из почтового ящика, номера всех последующих сообщений изменяются. Аналогично, новому сообщению может быть присвоен номер удаленного сообщения.
Номера сообщений могут использоваться при вычислениях, касающихся указателей. Например, если сообщение 287 в почтовом ящике, содержащем 523 сообщения, имеет UID 12345, имеется 286 сообщений, имеющих меньшее значение UID и 236 сообщений с большими UID.
Как это определено в разделе 4.1, AVP содержат поля ID производителя, атрибута и значения. Для ID производителя значение 0 IANA поддерживает регистр присвоенных атрибутов, а в некоторых случаях и значений. Атрибуты 0-39 присвоены согласно тому, как это описано в разделе 4.4. Остальные значения доступны для присвоения при согласовании с IETF [RFC 2434].
L2TP определяет AVP, которые могут пересылаться в процессе установления сессии с целью передачи PPP аутентификационной информации, полученной в LAC, для перепроверки в LNS (смотри раздел 4.4.5). Это предполагает полное доверие между LAC и LNS. Если LNS решит использовать прокси аутентификацию, она должна быть конфигурируема, требуя нового цикла PPP-аутентификации по инициативе LNS (который может включать или нет новый раунд согласования параметров с LCP).
L2TP включает в себя простую, опционную, CHAP-подобную [RFC1994] систему аутентификации туннеля в процессе установления \управляющего соединения. Если LAC или LNS хочет идентифицировать партнера, с которым контактирует или контактировал посредством AVP приглашения, включенного в SCCRQ или SCCRP-сообщения. Если в SCCRQ или SCCRP получена AVP приглашения, AVP отклика приглашения должна быть послана в следующем SCCRP или SCCCN, соответственно. Если ожидаемый отклик партнера не соответствует полученному, установление туннеля должно быть запрещено.
При участии в аутентификации туннеля LAC и LNS должны обладать общим секретным кодом. Это тот же секретный код, который использовался для AVP-сокрытия (смотри раздел 4.3).
Тип сообщения (все сообщения)
Тип сообщения AVP, тип атрибута 0, идентифицируют управляющее сообщение и определяет контекст, в котором будет определено точное значение последующих AVP. Поле значения атрибута для этой AVP имеет следующий формат:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
Тип сообщения |
Рис. 6
Тип сообщения характеризуется целым 2-октетным числом без знака.
Тип сообщения AVP должен быть первым AVP в сообщении, который следует непосредственно сразу за заголовком управляющего cообщения (определено в разделе 3.1). Список типов управляющих сообщений и их идентификаторов смотри в разделе 3.2.
Обязательный бит (M) в типе сообщения AVP имеет специальное назначение. Этот бит служит скорее не для указания того, следует ли игнорировать саму AVP, если бы она не распознана, а указанием того, что при не распознании следует игнорировать управляющее сообщение. Таким образом, если M-бит равен 1 в типе сообщения AVP, а тип сообщения неизвестен программе, туннель должен быть ликвидирован. Если бит M=0, тогда программа может игнорировать сообщения неизвестных типов. M-бит должен быть сделан равным 1 для всех типов сообщений определенных в данном документе. Эта AVP не может быть скрытой (H-бит должен быть равен нулю 0). Длина этого AVP равна 8.
Случайный вектор (все сообщения)
Случайный вектор AVP, тип атрибута 36, используются для разрешения сокрытия значения атрибута AVP.
Случайная последовательность октетов может иметь произвольную длину, хотя для случайного вектора рекомендуется длина, по крайней мере, 16 октетов. Строка содержит случайный вектор для использования при вычислении хэша MD5 чтобы извлечь или скрыть значение атрибута скрытого AVP (смотри раздел 4.2).
В сообщении может быть более одного случайного вектора AVP. Эта AVP должна предшествовать первому AVP с битом H =1.
M-бит для этого AVP должно быть равно 1. Это AVP не должно быть скрыто (H-бит должен быть равен 0). Длина этого AVP равно 6 плюс длина случайной строки октетов.
LAC может откликнуться на вызов и согласовать LCP с удаленной системой, возможно для того чтобы установить идентичность системы. В этом случае, эти AVP могут быть включены для индикации свойств канала, которые запросила удаленная система в исходном состоянии, свойства, согласованные удаленной системой и LAC после согласования, а также аутентификационная информация PPP, полученная LAC. Эта информация может быть использована, чтобы инициировать PPP LCP и аутентификационные системы в LNS, позволяя PPP продолжить работу без повторного согласования параметров с LCP.
LCP CONFREQ, полученный в исходном состоянии (ICCN)
В AVP, полученного в исходном состоянии LCP CONFREQ, тип атрибута 26, предоставляет LNS исходное сообщение CONFREQ, полученное LAC от партнера PPP.
LCP CONFREQ является копией тела полученного исходного CONFREQ, начиная с первой опции тела сообщения LCP. Длина поля значения атрибута LCP CONFREQ имеет произвольную длину. Эта AVP может быть скрытой (H-бит может быть 0 или 1). M-бит для этой AVP должен быть равен 0. Длина (до сокрытия) этой AVP равна 6 плюс длина CONFREQ.
Последний посланный LCP CONFREQ (ICCN)
В AVP последнего посланного LCP CONFREQ, тип атрибута 27, предоставляет LNS последнего CONFREQ, посланного LAC партнеру PPP.
LCP CONFREQ является копией тела финального CONFREQ, посланного клиенту с целью завершения LCP-согласования, начиная с первой опции тела LCP-сообщения. Длина поля значения атрибута LCP CONFREQ имеет произвольную длину. Эта AVP может быть скрытой (бит H может быть 0 или 1). M-бит этой AVP должен быть равен 0. Длина (до сокрытия) этой AVP равна 6 плюс длина CONFREQ.
Последний полученный LCP CONFREQ (ICCN)
AVP последнего полученного LCP CONFREQ, тип атрибута 28, предоставляет LNS последнего CONFREQ, полученного концентратором LAC от PPP-партнера.
LCP CONFREQ является копией тела последнего CONFREQ, полученного от клиента с целью завершения процедуры согласования LCP, начиная с первой опции тела LCP-сообщения.
Эта AVP может быть скрытой (бит H может быть 0 или 1).
M- бит для этой AVP должен быть равен 0. Длина (до сокрытия) этой AVP равна 6 плюс длина CONFREQ.
Тип прокси Authen (ICCN)
AVP типа прокси Authen, тип атрибута 29, определяет, должна ли использоваться прокси аутентификация. Тип Authen представляет собой 2-октетное целое число без знака.
Эта AVP может быть скрытой (бит H может быть 0 или 1). M-бит для этой AVP должен быть равен 0. Длина (до сокрытия) этой AVP равна 8. Определенные значения типа Authen:
0 - Зарезервировано
1 - Текстовой обмен имя пользователя/пароль
2 - PPP CHAP
3 - PPP PAP
4 - Никакой аутентификации
5 - Microsoft CHAP версия 1 (MSCHAPv1)
Эта AVP должна присутствовать, если должна использоваться прокси аутентификация. Если она отсутствует, тогда предполагается, что этот партнер не может выполнить прокси аутентификацию, необходимую для повторного запуска фазы аутентификации в LNS, если клиент уже вошел в эту фазу с LAC (который может быть определен AVP Proxy LCP, если имеется). Далее описаны соответствующие AVP для каждого типа аутентификации.
Имя прокси Authen (ICCN)
AVP имени прокси Authen, тип атрибута 30, специфицирует имя аутентифицируемого клиента при использовании прокси аутентификации.
Имя Authen является строкой октетов произвольной длины. Оно содержит имя, специфицированное в отклике аутентификации клиента.
Эта AVP должна присутствовать в сообщениях, содержащих AVP типа Proxy Authen с типом Authen 1, 2, 3 или 5. Может быть, желательно применить AVP-сокрытие для защиты имени, представленного открытым текстом. Эта AVP может быть скрытой (H-бит может быть 0 или 1). M-бит для этой AVP должен быть равен 0. Длина (до сокрытия) равна 6 плюс длина имени.
Приглашение прокси Authen (ICCN)
AVP приглашения прокси Authen, тип атрибута 31, специфицирует приглашение, посланное LAC партнеру PPP при использовании прокси аутентификации. Приглашение представляет собой строку из одного или более октетов.
Эта AVP должна присутствовать для типов прокси Authen 2 и 5. Поле приглашения содержит приглашение CHAP, предлагаемое LAC клиенту.
Эта AVP может быть скрытой (бит H может быть 0 или 1). M-бит для этой AVP должен быть равен 0. Длина (до сокрытия) этой AVP равна 6, плюс длина приглашения.
ID прокси Authen (ICCN)
AVP ID прокси Authen, тип атрибута 32, специфицирует код ID PPP-аутентификации, которая реализуется между LAC и PPP-партнером, когда используется прокси аутентификация. Поле значения атрибута для этого AVP имеет следующий формат:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
Зарезервировано | ID |
Ошибки вызова (WEN)
AVP ошибок вызова, тип атрибута 34, используется LAC для посылки LNS информации об ошибке. Поле значения атрибута для этого AVP имеет следующий формат:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | ||
Зарезервировано | Ошибка CRC (H) | ||||||||||||||||||||||||||||||||
Ошибка CRC (L) | Ошибка в формате кадра (H) | ||||||||||||||||||||||||||||||||
Ошибка в формате кадра (L) | Аппаратное переполнение (H) | ||||||||||||||||||||||||||||||||
Аппаратное переполнение (L) | Переполнение буфера (H) | ||||||||||||||||||||||||||||||||
Переполнение буфера (L) | Ошибка таймаута (H) | ||||||||||||||||||||||||||||||||
Ошибка таймаута (L) | Ошибка выравнивания (H) | ||||||||||||||||||||||||||||||||
Ошибка выравнивания (L) |
Рис. 16. Поле значения атрибута для AVP ошибок вызова
Определены следующие поля:
Зарезервировано | Не используется, должно равняться нулю 0 |
Ошибки CRC | Число PPP-кадров, полученных с CRC-ошибками с момента реализации вызова |
Ошибки формата кадров | Число полученных PPP-пакетов с неверным форматом |
Аппаратное переполнение | Число переполнений аппаратного буфера с момента реализации вызова |
Число переполнений буфера | Число зарегистрированных переполнений буфера с момента реализации вызова |
Число ошибок таймаутов | Число таймаутов с момента реализации вызова |
Ошибки выравнивания | Число ошибок выравнивания с момента реализации вызова |
Эта AVP может быть скрытой (бит H может быть 0 или 1). M-бит для этой AVP должен быть равен 1. Длина (до сокрытия) этой AVP равна 32.
ACCM (SLI)
AVP ACCM, тип атрибута 35, используется LNS, чтобы проинформировать LAC о ACCM, согласуемом LNS с PPP-партнером. Поле значения атрибута для этого AVP имеет следующий формат:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | ||
Зарезервировано | Послать ACCM (H) | ||||||||||||||||||||||||||||||||
Послать ACCM (L) | Получить ACCM (H) | ||||||||||||||||||||||||||||||||
Получить ACCM (L) |
Рис. 17. Поле значения атрибута для AVP ACCM
Посланное ACCM и полученное ACCM имеют по 4 октета, перед которыми размещаются 2 октета зарезервированного количества. Значение посланного ACCM должно использоваться LAC для обработки пакетов, которые он отправляет через канал. Значение полученного ACCM должно использоваться LAC для обработки пакетов, которые он получает через канал. Значения по умолчанию, используемые LAC для обоих этих полей равны 0xFFFFFFFF. LAC должен учитывать значения этих полей, если только нет конфигурационной информации, которая указывает, что запрошенная маска должна быть модифицирована, чтобы разрешить операцию.
Эта AVP может быть скрытой (бит H может быть 1 или 0). M-бит для этой AVP должен быть равен 1. Длина этой AVP равна 16.
Версия протокола (SCCRP, SCCRQ)
Версия протокола AVP, тип атрибута - 2, указывает на версию протокола L2TP отправителя. Поле значения атрибута для данной AVP имеет следующий формат:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
Ver | Rev |
Рис. 8. Поле значения атрибута для AVP управления контрольным соединением
Поле Ver характеризуется целым числом без знака длиной в один октет и содержит код 1. Поле Rev характеризуется целым числом без знака длиной в один октет и содержит код 0. Так характеризуется версия протокола L2TP 1, и модификация версии 0. Заметим, что это не тот же код версии, что включается в заголовок каждого сообщения.
Эта AVP не должна быть скрытой (бит H должен быть равен 0). Бит M для данной AVP должен быть равен 1. Длина этой AVP равна 8.
Возможность работы с кадрами (SCCRP, SCCRQ)
Возможность работы с кадрами AVP, тип атрибута - 3, предоставляет партнеру указание на типы кадров, которые будут приняты или запрошены отправителем. Поле значения атрибута для этого AVP имеет следующий формат:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | ||
Зарезервировано для будущих определений типа кадрового обмена | A | S |
Рис. 9. Поле значения атрибута для AVP возможности работы с кадрами
Поле значения атрибута представляет собой 32-битовую маску, с двумя определенными битами. Если бит A=1, поддерживается асинхронный обмен кадрами. Если бит S=1, поддерживается синхронный обмен кадрами.
Партнер не должен запрашивать входящий или исходящий вызов с кадровым типом AVP, специфицирующим значение, не указанное в AVP, которые были получены при установлении управляющего соединения. Такая попытка приведет к тому, что вызов будет отвергнут.
Эта AVP может быть скрытой (H-бит может быть 0 или 1). M-бит для этого AVP должен быть равен 1. Длина (до сокрытия) равна 10.
Возможности носителя (SCCRP, SCCRQ)
AVP возможностей носителя, тип атрибута - 4, предоставляют партнеру указание на типы носителя, поддерживаемые аппаратным интерфейсом отправителя для исходящих вызовов.
Поле значения атрибута для этого AVP имеет следующий формат:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | |
Зарезервировано для будущих определений типа несущей среды | A | D |
Q.931 код причины (CDN)
AVP, тип атрибута 12, используется, чтобы предоставить дополнительную информацию в случае непреднамеренного разрыва соединения. Поле значения атрибута для этого AVP имеет следующий формат:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | ||
Код причины | Сообщение причины | Сообщение-рекомендация |
Рис. 11. Поле значения атрибута для AVP кода причины Q.931
В качестве кода причины присылается код Q.931, а в качестве сообщения причины - сообщение Q.931 (например, DISCONNECT), ассоциированное с кодом причины. Оба кода присылаются в их исходных кодировках ITU [DSS1]. Дополнительный ASCI-текст сообщения-рекомендации может быть включен (присутствие определяется с помощью кода длины AVP) для дальнейшего уточнения причины отсоединения.
Эта AVP не должна быть скрытой (H-бит должен быть равен 0). M-бит для этой AVP должен быть равен 1. Длина этой AVP равна 9, плюс размер сообщения Advisory.
ID, присвоенное сессии (CDN, ICRP, ICRQ, OCRP, OCRQ)
AVP ID, присвоенного сессии, тип атрибута 14, содержит ID, присвоенное сессии отправителем сообщения. ID, присвоенное сессии, представляет собой 2-октетное целое, ненулевое число без знака.
AVP ID, присвоенного сессии, определяет код, который используется для мультиплексирования и демультиплексирования данных, посылаемых через туннель между LNS и LAC. Партнер L2TP должен поместить этот код в поле заголовка ID-сессии всех управляющих и информационных сообщений, которые пересылаются по туннелю в рамках данной сессии. До того как от партнера придет AVP ID, присвоенного сессии, управляющие сообщения должны посылаться партнеру с ID-сессии, равным нулю.
В управляющем сообщении CDN, используется первое AVP ID-сессии, полученное партнером, позволяя партнеру идентифицировать соответствующий туннель, даже если CDN послано до получения ID, присвоенное сессии.
Эта AVP может быть скрытой (бит H может быть 0 или 1). M-бит для этой AVP должен быть равен 1. Длина (до сокрытия) этой AVP равна 8.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | |
Зарезервировано для будущих определений типа несущей среды | A | D |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | |
Зарезервировано для будущих определений типа кадрового обмена | A | S |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | |
BPS (H) | BPS (L) |
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
Базовым элементом технологии Интернет является модуль IP. Его центральной частью является таблица маршрутов, используемая для принятия решения о направлении IP-пакета по тому или иному пути. Формат таблицы маршрутов задается используемым протоколом маршрутизации, а содержание - определяет администратор сети. Прямая маршрутизация имеет место при обмене пакетами между машинами, входящими в одну сеть. Большинство современных протоколов маршрутизации являются динамическими, то есть такими, где таблицы маршрутизации изменяются по мере изменения структуры и параметров окружающей сети. Такие протоколы заметно повышают надежность сети в целом, так как при выходе из строя какого-либо узла или канала связи поток пакетов может быть автоматически направлен в обход по резервному маршруту. При этом пользователи сети не должны ожидать момента, когда администратор сети вернется из отпуска, проснется или вернется из кафетерия и сам внесет необходимые коррективы.
Автономной системой называют такую локальную сеть или систему сетей, которые имеют единую администрацию и общую маршрутную политику.
Пользователь, связанный только с одним сервис-провайдером, должен принадлежать к общей с ним AS. Автономная система должна обязательно создаваться, когда оператор сети связан с более чем одной AS с отличной от его маршрутной политикой. Если же пользователь обращается к услугам двух или более сервис-провайдеров, придерживающихся различных маршрутных политик, то он должен создать свою независимую AS. Общим правилом является использование максимально возможного числа маршрутов. Это повышает надежность и способствует перераспределению нагрузки между каналами.
Внедрение идеологии автономных систем сделали возможным существенно облегчить процедуру маршрутизации, сократить требуемое число IP-адресов и создать гибкую и эффективную схему описания маршрутной политики.
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
Вряд ли отцы-создатели Интернет предполагали, что когда-либо, тем более при их жизни возникнет дефицит IP-адресов. Уже в 1996 году было зарегистрировано более 100000 сетей. Разбивка сетей на три класса A, B и С уже не может отвечать современным требованиям. Сеть класса А с ее 16000000 адресов слишком велика, а класса С с 254 адресами, как правило, слишком мала. Сети класса B с 65536 машинами может показаться оптимальными, но на практике каждая из этих сетей не обеспечивает оптимального использования адресного пространства и всегда остаются неиспользованные адреса (для классов B и A количество пустующих адресов оказывается обычно значительным). Адресные блоки заказываются администраторами, которые полагают, что однажды их организация или фирма станет великой с тысячами ЭВМ (пока же у них есть всего несколько машин). Надо сказать, что такие оптимистические прогнозы сбываются крайне редко. Проблема маршрутизации может быть решена путем реализации более глубокой структурной иерархии, где каждый IP-адрес имеет код страны, региона, города, сети, но при этом размер адреса должен существенно превышать 32 разряда, так как адреса неизбежно будут использоваться крайне не эффективно - ведь Китаю и Монако будут выделены равные адресные зоны. Это может стать возможным при внедрении технологии IPv6.
Если бы в адресах класса С для кода номера ЭВМ было выделено 10 или 11 бит (1024-2048), ситуация была бы более приемлемой. Маршрутизатор рассматривает IP-адресную среду на двух уровнях - адрес сети и адрес ЭВМ, при этом практически они работают только с адресами сетей. Число записей в маршрутной таблице должно будет быть равным половине миллиона записей (по числу блоков С-адресов).
Проблема может быть решена, если забыть про разбиение всей совокупности IP-адресов на классы. Такая модель реализуется в рамках протокола CIDR (Classless InterDomain Routing). В этой модели каждой сети ставится в соответствие определенное число смежных блоков по 256 адресов. Далее используется известное географическое зонное распределение IP-адресов (см. , а также RFC-1519). Протокол при просмотре маршрутных таблиц предполагает применение специальных масок и индексных механизмов.
Концы туннеля могут опционно выполнять процедуру аутентификации друг друга при установлении туннеля. Эта аутентификация имеет те же атрибуты безопасности, что и CHAP, и обладает разумной защитой против атак воспроизведения и искажения в процессе установления туннеля. Этот механизм не реализует аутентификации при формировании туннеля; так как достаточно просто для злонамеренного пользователя, который наблюдает обмен в туннеле, ввести свои пакеты, когда аутентификация полностью завершена.
Для реализации аутентификации LAC и LNS должны использовать общий секретный ключ. Каждая из сторон использует один и тот же ключ, когда выполняет роль аутентификатора и аутентифицируемого. Так как используется только один ключ, AVP аутентификации туннеля несут в себе разные значения полей в CHAP ID для вычисления дайджеста каждого сообщения, чтобы противостоять атакам воспроизведения.
Assigned Tunnel ID и Assigned Session ID (смотри раздел 4.4.3) должны быть выбраны непредсказуемым образом. Такая методика препятствует деятельности хакеров, которые не имеют доступа к пакетам, которыми обмениваются LAC и LNS.
Защищая поток L2TP-пакетов, так как это делает безопасный транспорт, мы защищаем данные, передаваемые по PPP-туннелю от LAC к LNS. Такая защита не должна рассматриваться как замена для безопасности точка-точка при передаче данных между ЭВМ или приложениями.
Обеспечение безопасности L2TP требует, чтобы транспортная среда могла обеспечить шифрование передаваемых данных, целостность сообщений и аутентификацию услуг для всего L2TP-трафика. Этот безопасный транспорт работает с пакетом L2TP в целом и функционально независим от PPP и протокола, вложенного в PPP. Как таковой, L2TP ответственен за конфиденциальность, целостность и аутентифицированность L2TP-пакетов внутри туннеля (LAC и LNS).
8-битовая текстовая и двоичная почта поддерживается посредством шифрования [MIME-IMB]. Реализации IMAP 4.1 могут передавать 8-битные или многооктетные символы в литералах, но должны это делать, только когда определен [CHARSET]. Если даже определена кодировка BINARY, незакодированные двоичные строки не могут быть разрешены. "Двоичная строка" – это любая строка из NUL символов. Реализации программ должны перекодировать двоичные данные в текстовую форму, такую как BASE64, прежде чем их пересылать. Строка с большим числом символов CTL может рассматриваться как двоичная.
Имеется 4 резервных бита в заголовке AVP. Дополнительные биты должны присваиваться через стандартную процедуру [RFC 2434].
В будущем для существующих классов могут быть описаны новые объекты C-Типа, а могут быть определены и новые классы объектов. Крайне желательно использовать такие объекты Интернет в рамках старых приложений, которые их не распознают. К сожалению, это возможно с заметными ограничениями. Здесь нужно придерживаться следующих правил (`b' означает бит).
1. Неизвестный класс
Существует три возможных способа, чтобы приложение RSVP могло работать с объектом неизвестного класса. Этот выбор определяется двумя старшими битами октета Class-Num. Class-Num = 0bbbbbbb. Все сообщение должно быть отброшено и возвращена ошибка "Unknown Object Class" (неизвестный класс объекта).Class-Num = 10bbbbbb. Узел должен игнорировать объект без дальнейшей пересылки или отправки сообщений об ошибке.Class-Num = 11bbbbbb. Узел должен игнорировать объект, но может переадресовать его далее без модификации со всеми сообщениями, вызванными данным запросом.
Ниже приведены более детализированные правила для работы с нераспознанными классами объектов для Class-Num вида 11bbbbbb: Такие объекты неизвестного класса, включенные в сообщения PathTear, ResvTear, PathErr или ResvErr, должны немедленно переадресовываться в рамках того же сообщения.Такие объекты неизвестного класса, включенные в сообщения Path или Resv, должны быть записаны в соответствующие состояния и посланы в сообщениях обновления, сопряженных с указанным состоянием.Когда формируется обновление Resv путем объединения нескольких запросов резервирования, сообщение обновления должно включать в себя объединение объектов неузнанных классов всех компонентов запроса. В этом объединении каждый такой объект может присутствовать только один раз.Исходный порядок таких объектов необязательно сохранять. Однако формируемое сообщение должно подчиняться общим правилам в отношении упорядочения объектов.
Хотя объекты с неизвестным классом не могут объединяться, эти правила позволяют передать их вплоть до узла, который сможет их распознать и объединить.
2. Неизвестный C-Тип для известного класса
Появление объекта с неизвестным C-типом приведет к выбрасыванию всего сообщения и генерации сообщения об ошибке (ResvErr или PathErr). Сообщение об ошибке будет включать Class-Num и C-тип, который был не распознан. Оконечная система, которая отправила нераспознанное сообщение может использовать эту информацию, чтобы попытаться повторить попытку с объектом другого C-типа.
Объекты определенных классов (FLOWSPEC, ADSPEC и POLICY_DATA) не прозрачны для RSVP, который просто передает их системе управления трафиком или другим модулям управления. В зависимости от внутренних правил любой из упомянутых модулей может отвергнуть C-Тип и информировать об этом RSVP-процесс; RSVP должен тогда отвергнуть такое сообщение и проинформировать об ошибке.
Сообщение Call-Disconnect-Notify (CDN) является L2TP управляющим сообщением, посылаемым LAC или LNS с целью запроса разрыва соединения для определенного вызова в пределах туннеля. Его целью является информирование партнера о рассоединении и причине разрыва соединения. Партнер должен освободить все ресурсы, и не посылать сообщений о причине данной операции.
Следующие AVP должны присутствовать в CDN:
Message Type
Код результата (Result Code)
Assigned Session ID
Следующие AVP могут присутствовать в CDN: | Код причины Q.931 |
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
Главной ЭВМ любой системы является та, на которой работаете вы. Но помимо этой машины и маршрутизатора локальной сети не последнюю роль играет сервер имен (DNS-система, RFC-4032, -4034, -4035, -2137, -2052, -2136, -1996, -1918, -1793, -1712-13, -1706, -1664, -1611-12, -1536-37, -1401, -1383, -1183, -1101, -1034-35). Сервер имен это программа управления распределенной базой данных, в которой хранятся символьные имена сетей и ЭВМ вместе с их IP-адресами. Наиболее распространенным программным продуктом, решающим данную задачу является BIND (Berkrley Internet Name Domain). Иногда для этой цели выделяют специальную машину. Задача DNS - преобразование символьного имени в IP-адрес и наоборот в условиях, когда число узлов Internet растет экспоненциально, совсем не проста. Сама иерархическая система имен (DNS) настроена на упрощение решения этой проблемы. Схема взаимодействия программы пользователя с локальным и удаленными DNS-серверами показана ниже на рисунке 4.4.12.1.
Рис. 4.4.12.1. Структура взаимодействия с серверами имен
База имен является распределенной, так как нет такой ЭВМ, где бы хранилась вся эта информация. Как уже отмечалось имя содержит несколько полей (длиной не более 63 символов), разделенных точками. Имя может содержать не более 255 октетов, включая байт длины. Анализ имени производится справа налево. Самая правая секция имени характеризует страну (двухсимвольные национальные коды смотри в приложении), или характер организации образовательная, коммерческая, правительственная и т.д.).
Следующие 3-х символьные коды в конце Internet-адреса означают функциональную принадлежность узла:
Таблица 4.4.12.1. Стандартизованные суффиксы имен
Поле адреса | Тип сети |
.aero | Фирма или организация, относящаяся к сфере авиации; |
.biz | Организация, относящаяся к сфере бизнеса; |
.com | Коммерческая организация; |
.coop | Кооперативная организация; |
.gov | Государственное учреждение (США); |
.info | Открытая TLD-структура (регистрация имен доменов) |
.org | Бесприбыльная организация; |
.edu | Учебное заведение; |
.mil | Военное предприятие или организация (США); |
.museum | Имя домена музея |
.name | Имя домена частного лица |
.net | Большая сеть; |
.pro | Профессионал, достойный доверия. Управляется RegistryPro (); |
.int | Международная организация; |
.arpa | Специальный домен, используемый для преобразования ip-адреса в имя |
Код поля флаги | Описание | |
0 (QR) | Операция: | 0 Запрос 1 Отклик |
1…4 | Тип запроса (opcode): | 0 стандартный 1 инверсный 2 запрос состояния сервера |
5 (AA) | Равен 1 при отклике от сервера (RR), в ведении которого находится домен, упомянутый в запросе. | |
6 (TC) | Равен 1 при укорочении сообщения. Для UDP это означает, что ответ содержал более 512 октетов, но прислано только первые 512. | |
7 (RD) | Равен 1, если для получения ответа желательна рекурсия. | |
8 (RA) | Равен 1, если рекурсия для запрашиваемого сервера доступна. | |
9…11 | Зарезервировано на будущее. Должны равняться нулю. | |
12…15 | Тип отклика (rcode): | 0 нет ошибки 1 ошибка в формате запроса 2 сбой в сервере 3 имени не существует |
Тип запроса | Код запроса | Описание |
A | 1 | IP-адрес |
NS | 2 | Сервер имен. |
CNAME | 5 | Каноническое имя. |
SOA | 6 | Начало списка серверов. Большое число полей, определяющих часть иерархии имен, которую использует сервер. |
MB | 7 | Имя домена почтового ящика. |
WKS | 11 | well-known service - стандартная услуга. |
PTR | 12 | Запись указателя. |
HINFO | 13 | Информация об ЭВМ. |
MINFO | 14 | Информация о почтовом ящике или списке почтовых адресов. |
MX | 15 | Запись о почтовом сервере. |
TXT | 16 | Не интерпретируемая строка ASCII символов. |
AXFR | 252 | Запрос зонного обмена |
* или ANY | 255 | Запрос всех записей. |
IP_address | Hard-addr | Delay | Date | Host_name |
128.141.202.101 | 00.00.0c.02.69.7d | 440 | 10/10/95 | na48-1.cern.ch |
192.148.166.102 | 00.00.a7.14.41.c2 | 5 | 10/10/95 | |
192.148.166.237 | 00.00.0c.02.69.7d | 5 | 10/10/95 | ITEP-M9.Relcom.ITEP.RU |
info.cern.ch | 86400 | IN | CNAME | www6.cern.ch |
www6.cern.ch | 86400 | IN | A | 128.141.202.119 |
www6.cern.ch | 86400 | IN | A | 128.141.202.119 |
CERN.CH | 52256 | IN | NS | dxmon.cern.ch |
CERN.CH | 52256 | IN | NS | ns.eu.net |
CERN.CH | 52256 | IN | NS | sunic.sunet.se |
CERN.CH | 52256 | IN | NS | scsnms.switch.ch |
0 _ _ _ | _ _ _ _ | Команда |
_ 000 | 0 _ _ _ | Запрос |
_ _ _ _ | _ _ 0 _ | Не укорочено |
_ _ _ _ | _ _ _ 0 | Рекурсия нежелательна |
1 _ _ _ | _ _ _ _ | Отклик |
_ 000 | 0 _ _ _ | Запрос |
_ _ _ _ | _ _ 0 _ | Не укорочено |
_ _ _ _ | _ 1 _ _ | Официальный ответ |
0 _ _ _ | _ _ _ _ | Уникальное имя NetBIOS |
_ 10 _ | _ _ _ _ | Узел М-типа |
_ _ _ _ | _ 1 _ _ | Активное имя |
_ _ _ _ | _ _ 0 _ | Временное имя |
1 _ _ _ | _ _ _ _ | Имя группы NetBIOS |
_ 10 _ | _ _ _ _ | Узел М-типа |
_ _ _ _ | _ 1 _ _ | Активное имя |
_ _ _ _ | _ _ 0 _ | Временное имя |
Последующая синтаксическая спецификация использует нотацию Бакуса-Наура (BNF - Backus-Naur Form), как это описано в [RFC-822] с одним исключением, разделителем, используемым в конструкции "#", служит одиночный пробел (SPACE), а не одна или более запятых.
В случае альтернативных или опционных правил, в которых последующее правило перекрывается с более ранним, более приоритетным считается правило, встретившееся первым. Некоторые, но не все случаи таких правил представлены ниже. Если не указано обратного, все буквенные символы не зависят от использования строчных или прописных букв. Конкретные программные реализации должны воспринимать такие строки при любом написании.
address ::= "(" addr_name SPACE addr_adl SPACE addr_mailbox SPACE addr_host ")"
addr_adl ::= nstring
;; Хранит маршрут из route-addr [RFC-822], если не равно нулю
addr_host ::= nstring
;; NIL указывает на синтаксис группы [RFC-822].
;; В противном случае, содержит имя домена [RFC-822]
addr_mailbox ::= nstring
;; NIL индицирует конец группы [RFC-822]; если не NIL, а addr_host равно NIL,
;; содержит имя группы ;; [RFC-822].
;; В противном случае, содержит локальную часть [RFC-822]
addr_name ::= nstring
;; Содержит фразу из почтового ящика [RFC-822], если не NIL
alpha ::= "A" / "B" / "C" / "D" / "E" / "F" / "G" / "H" /
"I" / "J" / "K" / "L" / "M" / "N" / "O" / "P" /
"Q" / "R" / "S" / "T" / "U" / "V" / "W" / "X" /
"Y" / "Z" /
"a" / "b" / "c" / "d" / "e" / "f" / "g" / "h" /
"i" / "j" / "k" / "l" / "m" / "n" / "o" / "p" /
"q" / "r" / "s" / "t" / "u" / "v" / "w" / "x" /
"y" / "z"
;; Чувствительно к набору строчными или прописными буквами
append ::= "APPEND" SPACE mailbox [SPACE flag_list]
[SPACE date_time] SPACE literal
astring ::= atom / string
atom ::= 1*ATOM_CHAR
ATOM_CHAR ::=
atom_specials ::= "(" / ")" / "{" / SPACE / CTL / list_wildcards /
quoted_specials
authenticate ::= "AUTHENTICATE" SPACE auth_type *(CRLF base64)
auth_type ::= atom
;; Определено в [IMAP-AUTH]
base64 ::= *(4base64_char) [base64_terminal]
base64_char ::= alpha / digit / "+" / "/"
base64_terminal ::= (2base64_char "==") / (3base64_char "=")
body ::= "(" body_type_1part / body_type_mpart ")"
body_extension ::= nstring / number / "(" 1#body_extension ")"
;; Будущее расширение. Реализации клиента должны воспринимать поля
;; body_extension. Реализации сервера не должны генерировать
;; поля body_extension, за исключением случаев, закрепленных в будущих
;; стандартах или зарегистрированных модификациях уже существующих норм.
body_ext_1part ::= body_fld_md5 [SPACE body_fld_dsp
[SPACE body_fld_lang
[SPACE 1#body_extension]]]
;; не должны присылаться при non-extensible доставке "BODY"
body_ext_mpart ::= body_fld_param
[SPACE body_fld_dsp SPACE body_fld_lang
[SPACE 1#body_extension]]
;; MUST NOT be returned on non-extensible "BODY" fetch
body_fields ::= body_fld_param SPACE body_fld_id SPACE
body_fld_desc SPACE body_fld_enc SPACE
body_fld_octets
body_fld_desc ::= nstring
body_fld_dsp ::= "(" string SPACE body_fld_param ")" / nil
body_fld_enc ::= (<"> ("7BIT" / "8BIT" / "BINARY" / "BASE64"/
"QUOTED-PRINTABLE") <">) / string
body_fld_id ::= nstring
body_fld_lang ::= nstring / "(" 1#string ")"
body_fld_lines ::= number
body_fld_md5 ::= nstring
body_fld_octets ::= number
body_fld_param ::= "(" 1#(string SPACE string) ")" / nil
body_type_1part ::= (body_type_basic / body_type_msg / body_type_text)
[SPACE body_ext_1part]
body_type_basic ::= media_basic SPACE body_fields
;; субтип MESSAGE не должен следовать "RFC822"
body_type_mpart ::= 1*body SPACE media_subtype
[SPACE body_ext_mpart]
body_type_msg ::= media_message SPACE body_fields SPACE envelope
SPACE body SPACE body_fld_lines
body_type_text ::= media_text SPACE body_fields SPACE body_fld_lines
capability ::= "AUTH=" auth_type / atom
;; Новая возможность должна начинаться с "X" или быть зарегистрирована
;; IANA в качестве стандарта или являться усовершенствованием
;; существующего стандарта
capability_data ::= "CAPABILITY" SPACE [1#capability SPACE] "IMAP4rev1"
[SPACE 1#capability]
;; серверы IMAP 4.1, которые предлагают совместимость с RFC 1730
;; должны включать "IMAP4" в список возможностей этой реализации
CHAR ::= 0x01 - 0x7f>
CHAR8 ::=
command ::= tag SPACE (command_any / command_auth /
command_nonauth / command_select) CRLF
;; Modal based on state
command_any ::= "CAPABILITY" / "LOGOUT" / "NOOP" / x_command
;; Справедливо для всех состояний
command_auth ::= append / create / delete / examine / list / lsub /
rename / select / status / subscribe / unsubscribe
;; Работает только в состояниях Authenticated или Selected
command_nonauth ::= login / authenticate
;; Работает только в состоянии Non-Authenticated
command_select ::= "CHECK" / "CLOSE" / "EXPUNGE" /
copy / fetch / store / uid / search
;; Работает только в состоянии Selected
continue_req ::= "+" SPACE (resp_text / base64)
copy ::= "COPY" SPACE set SPACE mailbox
CR ::=
create ::= "CREATE" SPACE mailbox
;; Использование INBOX не приводит к ошибке
CRLF ::= CR LF
CTL ::= 0x00 - 0x1f, 0x7f>
date ::= date_text / <"> date_text <">
date_day ::= 1*2digit
;; День месяца
date_day_fixed ::= (SPACE digit) / 2digit
;; Версия с фиксированным форматом date_day
date_month ::= "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun" /
"Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"
date_text ::= date_day "-" date_month "-" date_year
date_year ::= 4digit
date_time ::= <"> date_day_fixed "-" date_month "-" date_year
SPACE time SPACE zone <">
delete ::= "DELETE" SPACE mailbox
;; Использование INBOX не приводит к ошибке
digit ::= "0" / digit_nz
digit_nz ::= "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9"
envelope ::= "(" env_date SPACE env_subject SPACE env_from
SPACE env_sender SPACE env_reply_to SPACE env_to
SPACE env_cc SPACE env_bcc SPACE env_in_reply_to
SPACE env_message_id ")"
env_bcc ::= "(" 1*address ")" / nil
env_cc ::= "(" 1*address ")" / nil
env_date ::= nstring
env_from ::= "(" 1*address ")" / nil
env_in_reply_to ::= nstring
env_message_id ::= nstring
env_reply_to ::= "(" 1*address ")" / nil
env_sender ::= "(" 1*address ")" / nil
env_subject ::= nstring
env_to ::= "(" 1*address ")" / nil
examine ::= "EXAMINE" SPACE mailbox
fetch ::= "FETCH" SPACE set SPACE ("ALL" / "FULL" /
"FAST" / fetch_att / "(" 1#fetch_att ")")
fetch_att ::= "ENVELOPE" / "FLAGS" / "INTERNALDATE" /
"RFC822" [".HEADER" / ".SIZE" / ".TEXT"] /
"BODY" ["STRUCTURE"] / "UID" /
"BODY" [".PEEK"] section
["<" number "." nz_number ">"]
flag ::= "\Answered" / "\Flagged" / "\Deleted" /
"\Seen" / "\Draft" / flag_keyword / flag_extension
flag_extension ::= "\" atom
;; Будущее расширение. Реализации клиента должны воспринимать
;; флаги flag_extension. Реализации сервера не должны генерировать
;; флаги flag_extension, за исключением случаев, определенных в
;; будущих стандартах или зарегистрированных модификациях
;; данной спецификации.
flag_keyword ::= atom
flag_list ::= "(" #flag ")"
greeting ::= "*" SPACE (resp_cond_auth / resp_cond_bye) CRLF
header_fld_name ::= astring
header_list ::= "(" 1#header_fld_name ")"
LF ::=
list ::= "LIST" SPACE mailbox SPACE list_mailbox
list_mailbox ::= 1*(ATOM_CHAR / list_wildcards) / string
list_wildcards ::= "%" / "*"
literal ::= "{" number "}" CRLF *CHAR8
;; Число характеризует количество октетов CHAR8
login ::= "LOGIN" SPACE userid SPACE password
lsub ::= "LSUB" SPACE mailbox SPACE list_mailbox
mailbox ::= "INBOX" / astring
;; INBOX не чувствителен к использованию строчных или прописных букв.
;; все версии написания INBOX (напр., "iNbOx") должны
;; интерпретироваться как INBOX, а не как строку.
mailbox_data ::= "FLAGS" SPACE flag_list /
"LIST" SPACE mailbox_list /
"LSUB" SPACE mailbox_list /
"MAILBOX" SPACE text /
"SEARCH" [SPACE 1#nz_number] /
"STATUS" SPACE mailbox SPACE
"(" # number SPACE "EXISTS" / number SPACE "RECENT"
mailbox_list ::= "(" #("\Marked" / "\Noinferiors" /
"\Noselect" / "\Unmarked" / flag_extension) ")"
SPACE (<"> QUOTED_CHAR <"> / nil) SPACE mailbox
media_basic ::= (<"> ("APPLICATION" / "AUDIO" / "IMAGE" /
"MESSAGE" / "VIDEO") <">) / string)
SPACE media_subtype
;; Определено в [MIME-IMT]
media_message ::= <"> "MESSAGE" <"> SPACE <"> "RFC822" <">
;; Определено в [MIME-IMT]
media_subtype ::= string
;; Определено в [MIME-IMT]
media_text ::= <"> "TEXT" <"> SPACE media_subtype
;; Определено в [MIME-IMT]
message_data ::= nz_number SPACE ("EXPUNGE" /
("FETCH" SPACE msg_att))
msg_att ::= "(" 1#("ENVELOPE" SPACE envelope /
"FLAGS" SPACE "(" #(flag / "\Recent") ")" /
"INTERNALDATE" SPACE date_time /
"RFC822" [".HEADER" / ".TEXT"] SPACE nstring /
"RFC822.SIZE" SPACE number /
"BODY" ["STRUCTURE"] SPACE body /
"BODY" section ["<" number ">"] SPACE nstring /
"UID" SPACE uniqueid) ")"
nil ::= "NIL"
nstring ::= string / nil
number ::= 1*digit
;; 32- битное целое число без знака
;; (0 <= n < 4,294,967,296)
nz_number ::= digit_nz *digit
;; 32-битное не равное нулю целое число без знака
;; (0 < n < 4,294,967,296)
password ::= astring
quoted ::= <"> *QUOTED_CHAR <">
QUOTED_CHAR ::= /
"\" quoted_specials
quoted_specials ::= <"> / "\"
rename ::= "RENAME" SPACE mailbox SPACE mailbox
;; Использование INBOX в качестве места назначения не дает ошибки
response ::= *(continue_req / response_data) response_done
response_data ::= "*" SPACE (resp_cond_state / resp_cond_bye /
mailbox_data / message_data / capability_data)
CRLF
response_done ::= response_tagged / response_fatal
response_fatal ::= "*" SPACE resp_cond_bye CRLF
;; Сервер закрывает соединение немедленно
response_tagged ::= tag SPACE resp_cond_state CRLF
resp_cond_auth ::= ("OK" / "PREAUTH") SPACE resp_text
;; Условие аутентификации
resp_cond_bye ::= "BYE" SPACE resp_text
resp_cond_state ::= ("OK" / "NO" / "BAD") SPACE resp_text
;; Условие состояния
resp_text ::= ["[" resp_text_code "]" SPACE] (text_mime2 / text)
;; текст не должен начинаться с "[" или "="
resp_text_code ::= "ALERT" / "PARSE" /
"PERMANENTFLAGS" SPACE "(" #(flag / "\*") ")" /
"READ-ONLY" / "READ-WRITE" / "TRYCREATE" /
"UIDVALIDITY" SPACE nz_number /
"UNSEEN" SPACE nz_number /
atom [SPACE 1*]
search ::= "SEARCH" SPACE ["CHARSET" SPACE astring SPACE]
1#search_key
;; Символьный набор [CHARSET] должен быть зарегистрирован IANA
search_key ::= "ALL" / "ANSWERED" / "BCC" SPACE astring /
"BEFORE" SPACE date / "BODY" SPACE astring /
"CC" SPACE astring / "DELETED" / "FLAGGED" /
"FROM" SPACE astring /
"KEYWORD" SPACE flag_keyword / "NEW" / "OLD" /
"ON" SPACE date / "RECENT" / "SEEN" /
"SINCE" SPACE date / "SUBJECT" SPACE astring /
"TEXT" SPACE astring / "TO" SPACE astring /
"UNANSWERED" / "UNDELETED" / "UNFLAGGED" /
"UNKEYWORD" SPACE flag_keyword / "UNSEEN" /
;; Выше этой строки все в [IMAP2]
"DRAFT" /
"HEADER" SPACE header_fld_name SPACE astring /
"LARGER" SPACE number / "NOT" SPACE search_key /
"OR" SPACE search_key SPACE search_key /
"SENTBEFORE" SPACE date / "SENTON" SPACE date /
"SENTSINCE" SPACE date / "SMALLER" SPACE number /
"UID" SPACE set / "UNDRAFT" / set /
"(" 1#search_key ")"
section ::= "[" [section_text / (nz_number *["." nz_number]
["." (section_text / "MIME")])] "]"
section_text ::= "HEADER" / "HEADER.FIELDS" [".NOT"]
SPACE header_list / "TEXT"
select ::= "SELECT" SPACE mailbox
sequence_num ::= nz_number / "*"
;; * является наибольшим используемым числом. Для порядковых номеров
;; сообщений оно равно количеству сообщений в почтовом ящике.
;; Для уникальных идентификаторов оно равно уникальному
;; идентификатору последнего сообщения в почтовом ящике./p>
set ::= sequence_num / (sequence_num ":" sequence_num) /
(set "," set)
;; Идентифицирует набор сообщений. Для порядковых номеров
;; сообщений это последовательность чисел с 1 до числа
;; сообщений в почтовом ящике.
;; Запятая разграничивает индивидуальные номера, двоеточие
;; указывает на диапазон чисел включительно.
;; Пример для почтового ящика с 15 сообщениями: 2,4:7,9,12:*
;; эквивалентно 2,4,5,6,7,9,12,13,14,15.
SPACE ::=
status ::= "STATUS" SPACE mailbox SPACE "(" 1#status_att ")"
status_att ::= "MESSAGES" / "RECENT" / "UIDNEXT" / "UIDVALIDITY" /
"UNSEEN"
store ::= "STORE" SPACE set SPACE store_att_flags
store_att_flags ::= (["+" / "-"] "FLAGS" [".SILENT"]) SPACE
(flag_list / #flag)
string ::= quoted / literal
subscribe ::= "SUBSCRIBE" SPACE mailbox
tag ::= 1*
text ::= 1*TEXT_CHAR
text_mime2 ::= "=?" "?" "?"
"?="
;; Синтаксис определен в [MIME-HDRS]
TEXT_CHAR ::=
time ::= 2digit ":" 2digit ":" 2digit
;; Часы, минуты, секунды
uid ::= "UID" SPACE (copy / fetch / search / store)
;; Уникальные идентификаторы используются вместо
;; последовательных номеров сообщения.
uniqueid ::= nz_number
;; В возрастающем порядке
unsubscribe ::= "UNSUBSCRIBE" SPACE mailbox
userid ::= astring
x_command ::= "X" atom
zone ::= ("+" / "-") 4digit
;; Число из 4 цифр со знаком hhmm, представляющее часы и минуты к западу от Гринвича
;; (Это число отличается от Universal Time). Вычитая временную зону из данного времени, можно получить
;; форму UT. Зона Universal Time равна "+0000".
Соображения безопасности
Протокольные операции IMAP 4.1, включая данные электронной почты, передаются через сеть открытым текстом, если только не согласовано применение конфиденциальных методов обмена посредством команды AUTHENTICATE.
Сообщения об ошибках сервера для команды AUTHENTICATE, которая не прошла из-за неверных параметров аутентификации, не должна уточнять какой из параметров содержит ошибку.
Использование команды LOGIN осуществляет передачу паролей открытым текстом. Этого можно избежать, используя для этого команду AUTHENTICATE.
A. Библиография
[ACAP] | Myers, J. "ACAP -- Application Configuration Access Protocol", Work in Progress. |
[CHARSET] | Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1700, USC/Information Sciences Institute, October 1994. |
[DISPOSITION] | Troost, R., and Dorner, S., "Communicating Presentation Information in Internet Messages: The Content-Disposition Header", RFC 1806, June 1995. |
[IMAP-AUTH] | Myers, J., "IMAP4 Authentication Mechanism", RFC 1731. Carnegie-Mellon University, December 1994. |
[IMAP-COMPAT] | Crispin, M., "IMAP4 Compatibility with IMAP2bis", RFC 2061, University of Washington, November 1996. |
[IMAP-DISC] | Austein, R., "Synchronization Operations for Disconnected IMAP4 Clients", Work in Progress. |
[IMAP-HISTORICAL] | Crispin, M. "IMAP4 Compatibility with IMAP2 and IMAP2bis", RFC 1732, University of Washington, December 1994. |
[IMAP-MODEL] | Crispin, M., "Distributed Electronic Mail Models in IMAP4", RFC 1733, University of Washington, December 1994. |
[IMAP-OBSOLETE] | Crispin, M., "Internet Message Access Protocol - Obsolete Syntax", RFC 2062, University of Washington, November 1996 |
[IMAP2] | Crispin, M., "Interactive Mail Access Protocol - Version 2", RFC 1176, University of Washington, August 1990. |
[LANGUAGE-TAGS] | Alvestrand, H., "Tags for the Identification of Languages", RFC 1766, March 1995. |
[MD5] | Myers, J., and M. Rose, "The Content-MD5 Header Field", RFC 1864, October 1995. |
[MIME-IMB] | Freed, N., and N. Borenstein, "MIME (Multipurpose Internet Mail Extensions) Part One: Format of Internet Message Bodies", RFC 2045, November 1996. |
[MIME-IMT] | Freed, N., and N. Borenstein, "MIME (Multipurpose Internet Mail Extensions) Part Two: Media Types", RFC 2046, November 1996. |
[MIME-HDRS] | Moore, K., "MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text", RFC 2047, November 1996. |
[RFC-822] | Crocker, D., "Standard for the Format of ARPA Internet Text Messages", STD 11, RFC 822, University of Delaware, August 1982. |
[SMTP] | Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821, USC/Information Sciences Institute, August 1982. |
[UTF-7] | Goldsmith, D., and Davis, M., "UTF-7: A Mail-Safe Transformation Format of Unicode", RFC 1642, July 1994. |
Каждая AVP кодируется следующим образом:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | ||
M | H | rsvd | Длина | ID производителя | |||||||||||||||||||||||||||||
Тип атрибута | Значение атрибута | ||||||||||||||||||||||||||||||||
Продолжение поля значение атрибута до границы, заданной полем длина |
Рис. 4.
Первые 6 бит представляют собой битовую маску, характеризующую атрибуты AVP.
Два бита определены в этом документе, остальные - зарезервированы на будущее. Зарезервированные биты должны равняться нулю. AVP, полученная с зарезервированным набором бит равным 1, должна рассматриваться как не узнанная AVP.
Обязательный бит M (Mandatory) контролирует реакцию системы на получение нераспознанной AVP. Если бит M =1 для нераспознанной AVP в сообщении, ассоциированном с определенной сессией, эта сессия должна быть немедленно завершена. Если бит M =1 для нераспознанной AVP в сообщении, ассоциированном со всем туннелем, этот туннель (и все его сессии) должен быть ликвидирован. Если бит M =0, нераспознанную AVP следует игнорировать. Управляющие сообщения должны обрабатываться при этом так, как если бы AVP не было.
Бит сокрытия (H). Идентифицирует скрываемые данные в поле значения атрибута AVP. Эта возможность может использоваться, чтобы исключить передачу важных данных, например пароля пользователя, в незашифрованном тексте AVP. В разделе 4.3 описана процедура выполнения сокрытия AVP.
Длина. Число октетов (включая поля полной длины и маски) в AVP. Длина может быть вычислена как 6 + длина поля значения атрибута в октетах. Поле имеет 10 бит, позволяя закодировать до 1023 октетов в одной AVP. Минимальный код длины AVP равен 6. Если длина равна 6, поле значения атрибута отсутствует.
ID производителя (Vendor ID). IANA определила значения кодов производителей (SMI Network Management Private Enterprise Codes) [RFC1700]. Значение 0, соответствующее атрибутам, адаптированным для IETF, используется для всех AVP, определенных в данном документе. Любой производитель, желающий реализовать свое собственное расширение L2TP, может использовать свой код Vendor ID вместе с частными значениями атрибута, гарантирующие отсутствие столкновений с любыми расширениями других производителей, или будущими расширениями IETF. Заметим, что для ID-производителя выделено 16 бит, что ограничивает максимальное число производителей цифрой 65,535.
Тип атрибута: 2-октетное значение с уникальной интерпретацией для совокупности AVP данного ID-производителя.
Значение атрибута. Действительное значение атрибута для заданного Vendor ID и типа атрибута. Оно следует немедленно после поля типа атрибута, и занимает все пространство октетов, отведенное значением поля длина (т.e., длина минус 6 октетов заголовка). Это поле отсутствует, если длина равна 6.
IMAP 4.1 использует текстовые команды и отклики. Данные в IMAP 4.1 могут иметь одну из следующих форм: атом, число, строка, список, заключенный в скобки или NIL.
Атом состоит из одного или более неспециализированных символов.
Число состоит из одной или более цифр и характеризует некоторое числовое значение.
Строка может иметь одну из двух форм: литерал или строка в кавычках. Литеральная форма является основной формой строки. Строка в кавычках является альтернативной формой, исключающей избыточность литеральной формы за счет ограничений, налагаемых на символы, используемые в строке.
Литерал представляет собой нуль или более октетов (включая CR и LF). Литерал начинается с октета, где хранится число символов. Этот октет заключается в фигурные скобки, за которыми следует последовательность CRLF. В случае передачи литералов от сервера к клиенту за CRLF следуют непосредственно данные. При передаче литералов от клиента серверу клиент должен подождать прихода команды продолжения, прежде чем начать пересылку данных.
Строка в кавычках представляет собой последовательность из нуля или более 7-битовых символов за исключением CR и LF, начинающуюся и завершающуюся двойной кавычкой (<">). Пустая строка представляется как "" или как литерал {0}, за которым следует последовательность CRLF.
Замечание: Даже если число октетов равно нулю, клиент, передающий литерал должен подождать прихода команды продолжения.
Протоколы NTP и SNTP используют в качестве транспортного протокол UDP. При этом работает UDP-порт 123 (NTP), который проставляется как в поле порта отправителя, так и получателя UDP-заголовка.
Ниже приводится описание формата сообщений NTP/SNTP v.4, которые размещаются после UDP-заголовка. Этот формат идентичен описанному в RFC-1305, за исключением содержимого поля идентификатора эталона (reference identifier). Поля заголовка представлены на рис. 4.4.16.2:
Рис. 4.4.16.2. Формат заголовка SNTP-пакета
Поле LI (Leap Indicator) содержит два бита кода предупреждения о добавлении/удалении секунды в последней минуте текущего дня. Значения кодов поля LI приведены в таблице 4.4.16.1:
Таблица 4.4.16.1 Значения кодов поля LI
LI | Величина | Значение |
00 | 0 | предупреждения нет |
01 | 1 | последняя минута содержит 61 секунду |
10 | 2 | последняя минута содержит 59 секунд |
11 | 3 | аварийный сигнал (часы не синхронизованы) |
Поле VN (Version Number - номер версии) имеет длину три бита и содержит номер версии протокола NTP/SNTP. Это поле содержит 3 для V.3 (только IPv4) и 4 для V.4 (IPv4, IPv6 и OSI).
Поле режим также содержит три бита и указывает на код режима. Значения кодов режима представлены в таблице 4.4.16.2.
Таблица 4.4.16.2. Значение кодов поля режим
Режим | Значение |
0 | зарезервировано |
1 | симметричный активный |
2 | симметричный пассивный |
3 | клиент |
4 | сервер |
5 | широковещательный |
6 | для управляющих сообщений NTP |
7 | зарезервировано для частного использования |
В уникастном и эникастном режиме клиент при запросе устанавливает это поле равным 3 (клиент), а сервер в отклике устанавливает его равным 4. В мультикастном режиме сервер записывает в данное поле код 5 (широковещательный).
Поле слой (Stratum) содержит восемь бит, указывающих на уровень локальных часов. Значения кодов поля слой представлены в таблице 4.4.16.3.
Таблица 4.4.16.3. Значения кодов поля слой (stratum)
Слой | Значение |
0 | не специфицирован или не доступен |
1 | первичный эталон (например, радио часы) |
2-15 | вторичный эталон (через NTP или SNTP) |
16-255 | зарезервировано на будущее |
ID-код | Внешний эталонный источник |
LOCL | В качестве первичного эталона для субсети используются некалиброванные внутренние часы, которые не имеют внешнего источника синхронизации |
PPS | Атомные часы или другой источник, выдающий импульс каждую секунду и индивидуально калиброванный с использованием национального стандарта времени |
ACTS | Модемная служба NIST (работает через коммутируемую телефонную сеть) |
USNO | Модемная служба USNO |
PTB | Модемная служба PTB (Германия) |
TDF | Радио 164 кГц (Allouis Франция) |
DCF | Радио 77.5 кГц (Mainflingen, Германия) |
MSF | Радио 60 кГц (Rugby, Англия) |
WWV | Радио 2.5, 5, 10, 15, 20 МГц (Ft. Collins, США) |
WWVB | Радио 60 кГц (Boulder, US) |
WWVH | Радио 2.5, 5, 10, 15 МГц (Кауи Гавайи, США) |
CHU | Радио 3330, 7335, 14670 кГц (Оттава, Канада) |
LORC | Радионавигационная система LORAN-C |
OMEG | Радионавигационная система OMEGA |
GPS | Глобальная служба определения местоположения |
GOES | Геостационарный спутник контроля за окружающей средой |
Протокол SNTP использует стандартный формат временных меток NTP, описанный в документе RFC-1305 и в предыдущих версиях стандарта. Для согласования со стандартной практикой в Интернет данные NTP характеризуются целыми числами с фиксированной запятой. Биты нумеруются так, что нулевой (старший) разряд размещается слева. Если не оговорено обратного, все числа не имеют знака и занимают все выделенное для них поле.
Так как временная метка NTP представляет собой наиважнейшую часть протокола, для нее разработан специальный формат. Временные метки NTP характеризуются 64-битным числом без знака с фиксированной запятой, которое равно количеству секунд с 0 часов 1 января 1900. Для целочисленной части выделено 32 бита и столько же для дробной части.
Рекомендуется заполнять несущественные младшие двоичные разряды временной метки случайной битовой строкой, что исключает систематические ошибки округления и является средством детектирования зацикливания. Одним из методов выполнения этого условия является генерация случайной 64-битовой последовательности, с последующим ее сдвигом вправо на число бит, равное количеству значащих разрядов временной метки, и добавлением результата к исходному значению временной метки.
Максимальное число, которое может быть представлено в данном формате равно 4,294,967,295 секунд с точностью порядка 200 пикосекунд, что может удовлетворить самым экзотическим требованиям.
Рис. 4.4.16.1. Формат представления временной метки
Заметим что с некоторого времени в 1968 (2,147,483,648 секунда) старший бит (бит 0 целочисленной части) стал равным 1 и 64-битовое поле переполнится в 2036 году. Если NTP или SNTP будут использоваться в 2036 г, будут необходимы некоторые внешние по отношению к данному протоколу меры для определения того относительно 1900 или 2036 года отсчитана приведенная дата (это справедливо и для других дат, кратных 136 годам).
Так как формат временных меток NTP использовался в течение последних 17 лет, остается возможность того, что он будет использоваться еще 40 лет. Так как временных меток NTP до 1968 не существует, можно считать приемлемым, что при бите 0 равном 1, UTC-время лежит в диапазоне 1968-2036 с началом отсчета 0 час. 0 мин. 0 сек. 1 января 1900 г. Если же бит 0 равен нулю, время лежит в диапазоне 2036-2104 г., а UTC-время отсчитывается от 6 час. 28 мин. 16 сек. 7 февраля 2036. Заметим, что при этом вычислении 2000 год не считался високосным.
Пакеты L2TP для контрольного и информационного каналов используют один и тот же формат заголовка. Заметим, что поля длина, Ns и Nr - опционные для информационных пакетов, являются обязательными для всех управляющих сообщений.
Заголовок имеет следующий формат:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 31 | |||||
T | L | x | x | S | x | O | P | x | x | x | x | Версия | Длина (опц) | |||||||||
ID туннеля | ID сессии |
Рис. 3. Формат заголовка L2TP
Бит тип (T) характеризует разновидность пакета. Он устанавливается равным 0 для информационных сообщений и 1 - для управляющих.
Если бит длины (L) равен 1, поле длина присутствует. Для управляющих сообщений этот бит должен быть равен 1.
Биты x зарезервированы для будущих применений. Все зарезервированные биты должны быть установлены равными 0 для исходящих сообщений и игнорироваться для входящих.
Если бит последовательности (S) равен 1, поля Ns и Nr присутствуют. Бит S для управляющих сообщений должен быть равен 1.
Если бит смещения (O) равен 1, поле величины смещения присутствует. Бит O для управляющих сообщений должен быть равен 0.
Если бит приоритета Р равен 1, это информационное сообщение должно обслуживаться с предпочтением при обработке очередей и передаче. Запрос эхо LCP (Link Control Protocol) используется для канала, в качестве контроля keepalive, его следует посылать с битом приоритета равным 1. Без этого, временные периоды локальной перегрузки могут вызвать интерференцию с сообщениями keepalive и потерю связи. Эта особенность характерна только для информационных сообщений. Бит P должен быть равен 0 для всех управляющих сообщений.
Поле Ver должно быть равно 2, указывая версию заголовка информационного сообщения L2TP. Значение 1 зарезервировано для детектирования пакетов L2F [RFC-2341], в условиях, когда они приходят вперемешку с L2TP-пакетами. Пакеты, полученные с неизвестным значением поля Ver должны отбрасываться. Поле длина указывает общую длину сообщения в октетах.
ID-туннеля содержит идентификатор управляющего соединения. Идентификаторы туннеля L2TP имеют только локальное значение.
То есть, разные концы одного туннеля должны иметь разные ID. ID-туннеля в каждом сообщении должно быть тем, которое ожидает получатель. ID-туннеля выбираются при формировании туннеля.
ID-сессии определяет идентификатор для сессии данного туннеля. Сессии L2TP именуются с помощью идентификаторов, которые имеют только локальное значение. ID-сессии в каждом сообщении должно быть тем, которое ожидает получатель. ID-сессии выбираются при формировании сессии.
Ns определяет порядковый номер информационного или управляющего сообщения, начиная с нуля и увеличиваясь на 1 (по модулю 216) для каждого посланного сообщения. Смотри разделы 5.8 и 5.4.
Nr содержит порядковый номер, который ожидается для следующего сообщения. Таким образом, Nr делается равным Ns последнего по порядку полученного сообщения плюс один (по модулю 216). В информационных сообщениях, Nr зарезервировано и, если присутствует (как это определяется S- битом), должно игнорироваться при получении. Смотри раздел 5.8.
Поле величина смещения (Offset Size), если имеется, специфицирует число октетов после заголовка L2TP, где должно начинаться поле данных. Содержимое заполнителя смещения не определено. Если поле смещения присутствует, заголовок L2TP завершается после завершающего октета заполнителя смещения.
Каждый объект состоит из одного или более 32-битных слов с 4-байтовым заголовком. Формат объекта показан на рис. 4.4.9.6.9:
Рис. 4.4.9.6.9. Формат объекта
Заголовок объекта имеет следующие поля:
Длина в байтах
16-битовое поле, содержащее полную длину объекта в байтах. Длина должна быть кратна 4 октетам, минимальное значение равно 4.
Class-Num
Идентифицирует класс объекта. Каждый класс объекта имеет свое имя, которое в данном документе записывается прописными буквами. Приложения RSVP должны распознавать следующие классы:
NULL
Объект NULL имеет код Class-Num равный нулю, а его C-тип игнорируется. Его длина должна быть, по крайней мере, равна 4, но может быть любой кратной 4. Объект NULL может появиться где угодно в последовательности объектов. Его содержимое получателем игнорируется.
SESSION
Содержит IP-адрес места назначения (DestAddress), идентификатор протокола IP, и обобщенный номер порта назначения, для того чтобы специфицировать сессию для других объектов, которые следуют далее. Этот класс должен присутствовать в любом сообщении RSVP.
RSVP_HOP
Несет в себе IP-адрес узла, поддерживающего протокол RSVP, который послал это сообщение, и дескриптор логического выходного интерфейса (LIH). Этот класс характеризует предшествующий узел (previous hop).
TIME_VALUES
Содержит значение периода обновления R, используемого отправителем сообщения. Необходим в каждом сообщении Path и Resv.
STYLE
Определяет стиль резервирования, а также зависящую от стиля информацию, которая не включена в объекты FLOWSPEC или FILTER_SPEC. Необходим в каждом сообщении Resv.
FLOWSPEC
Определяет желательный уровень QoS, в сообщениях Resv.
FILTER_SPEC
Определяет субнабор информационных пакетов сессии, которые должны получить желательный уровень QoS (специфицированный объектом FLOWSPEC), в сообщениях Resv.
SENDER_TEMPLATE
Содержит IP-адрес отправителя и, может быть, некоторые дополнительную информацию, идентифицирующую отправителя. Необходим в сообщениях Path.
SENDER_TSPEC
Определяет характеристики информационного трафика отправителя.
Необходим в сообщениях Path.
ADSPEC
Несет в себе данные OPWA, в сообщении Path.
ERROR_SPEC
Специфицирует ошибку в сообщениях PathErr, ResvErr, или подтверждение в сообщении ResvConf.
POLICY_DATA
Несет в себе информацию, которая позволит локальному модулю, определяющему политику, принять решение, допустимо ли административно соответствующее резервирование. Может присутствовать в сообщениях Path, Resv, PathErr или ResvErr.
INTEGRITY
Несет в себе криптографические данные для аутентификации исходного узла и для верификации содержимого сообщения RSVP. Использование объекта INTEGRITY описано в ссылке [Baker96] в конце данного документа.
SCOPE
Несет в себе список ЭВМ-отправителей, к которым должно быть переадресовано данное сообщение. Может присутствовать в сообщениях Resv, ResvErr или ResvTear.
RESV_CONFIRM
Несет в себе IP-адрес получателя, который запросил подтверждение. Может присутствовать в сообщениях Resv или ResvConf.
C-Type
Тип объекта, уникален в пределах класса Class-Num.
Максимальная длина объекта равна 65528 байт. Поля Class-Num и C-Тип могут использоваться совместно, как 16-битовое число, для определения уникального типа для каждого из объектов.
Старшие два бита Class-Num используются для определения того, какие действия должен предпринять узел, если он не распознает Class-Num объекта.
18. Сообщения Path
Каждая ЭВМ-отправитель периодически отправляет сообщения Path для каждого из информационных потоков, берущих здесь свое начало. Это сообщение содержит объект SENDER_TEMPLATE, определяющий формат пакетов данных, и объект SENDER_TSPEC, специфицирующий характеристики трафика потока. Опционно сообщение может содержать объект ADSPEC, несущий в себе информацию о потоке (OPWA).
Сообщение Path направляется от отправителя к получателю по тому же маршруту, по которому движутся информационные пакеты. IP-адрес источника в сообщении Path должен характеризовать адрес отправителя, в то время как адрес места назначения должен быть равен DestAddress для текущей сессии.
Эти адреса гарантируют, что сообщение будет корректно маршрутизовано даже через области сети, не поддерживающие RSVP. Формат сообщения Path имеет следующий вид:
<Path Message> ::= <Common Header> [ <INTEGRITY> ]
<SESSION> <RSVP_HOP>
<TIME_VALUES>
[ <POLICY_DATA> ... ]
[ <sender descriptor> ]
<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>
[ <ADSPEC> ]
Если присутствует объект INTEGRITY, он должен следовать непосредственно за стандартным общим заголовком. Не существует каких-либо иных ограничений порядка передачи, хотя упомянутое выше требование является рекомендательным. Число объектов POLICY_DATA может быть произвольным.
Объект PHOP (т.е., RSVP_HOP) каждого сообщения Path содержит адрес предшествующего узла, напр., IP-адрес интерфейса, через который только что было послано сообщение Path. Он также содержит дескриптор логического интерфейса (LIH).
Каждый узел, поддерживающий RSVP, вдоль пути перехватывает сообщение Path и обрабатывает его, с тем чтобы сформировать состояние пути для отправителя, заданного объектами SENDER_TEMPLATE и SESSION. Любой из объектов POLICY_DATA, SENDER_TSPEC и ADSPEC также записываются в состояние пути. Если случилась ошибка при обработке сообщения Path, посылается сообщение PathErr первичному отправителю сообщения Path.
Периодически процесс RSVP в узле сканирует состояние прохода, чтобы сформировать новые сообщения Path для посылки их получателям. Каждое сообщение содержит дескриптор, характеризующий одного отправителя, несет в себе IP-адреса отправителя и его источника.
Процесс RSVP переадресует и размножает (если требуется, например при мультикастинге) сообщения Path, используя маршрутную информацию, которую он получает от соответствующих процессов маршрутизации. Маршрут зависит от DestAddress сессии и для некоторых протоколов маршрутизации от адреса источника. Маршрутная информация обычно включает в себя список выходных интерфейсов, куда должно направляться сообщение Path.
Так как каждый выходной интерфейс имеет свой IP адрес, сообщения Path, посланные разными интерфейсами содержат отличные адреса PHOP. Кроме того, объекты ADSPEC, содержащие сообщения Path, будут отличаться для разных выходных интерфейсов.
Состояние пути для данной сессии и отправителя не обязательно должны иметь уникальные PHOP или уникальный входной интерфейс. Существует два случая, соответствующие мультикастной и уникастной сессиям. Мультикастные сессии
Мультикастинговая маршрутизация позволяет иметь стабильное дерево распределения, в котором сообщения Path от одного и того же отправителя приходят от более чем одного PHOP, и RSVP должен быть готов поддерживать все такие состояния пути. RSVP не должен пересылать сообщения Path, которые прибывают через входной интерфейс, отличный от указанного в маршрутной таблице. Уникастные сессии
В течение короткого периода времени, следующего после изменения уникастного маршрута, узел может получать сообщения Path от нескольких PHOP для данной сессии и отправителя. Узел не может надежно определить, какой из PHOP является правильным, хотя узел будет получать одновременно только один из PHOP. Одним из вариантов реализации RSVP является игнорирование PHOP и допущение для PHOP переключаться между имеющимися кандидатами. Другим вариантом является поддержание состояния пути для каждого PHOP и посылка сообщения Resv всем таким PHOP. В любом варианте ситуация является переходной, неиспользуемые состояния пути все равно будут удалены (явно или по таймауту).
AVP Framing Capabilities и Bearer Capabilities (определенные в разделе 4.4.3) содержат 32-битовые маски. Дополнительные биты могут быть определены через стандартную процедуру [RFC 2434].
При аналезе характеристик протокола предполагается, что потери пакетов происходят с вероятностью 1/р. Авторы определяют эпоху перегрузки как время между двумы последовательными потерями пакетов.
Пусть Wmax обозначает размер окна непосредственно перед потерей пакета. После потери размер окна уменьшается до Wmax(1 - b). BI-TCP переключается от аддитивного увеличения к двоичному поисковому увеличению окна, когда различие между текущим значением ширины окна и конечным значением (target) меньше Smax. Так как конечное (target)значение ширины окна является средней точкой между Wmax и текущим значением ширины окна, можно сказать, что BI-TCP переключается между этими двумя приращениями, когда разница между текщией шириной окна и Wmax меньше 2Smax. Ниже в таблицах 2 и 3 представлены расчетные характеристики протоколов AIMD, BI-TCP, HSTCP и STCP для каналов с быстродействием 100 и 2500 Мбит/c.
Таблица 2. Отношения пропускной способности протоколов при 100Мбит/c
Отношение RTT | 1 | 3 | 6 |
AIMD | 0,99 | 7,31 | 26,12 |
BI-TCP | 0,94 | 13,06 | 33,81 |
HSTCP | 1,13 | 10,42 | 51,09 |
STCP | 1,12 | 27,84 | 72,74 |
Таблица 3. Отношения пропускной способности протоколов при 2,5Гбит/c
Отношение RTT | 1 | 3 | 6 |
AIMD | 1,05 | 6,56 | 22,55 |
BI-TCP | 0,96 | 9,18 | 35,76 |
HSTCP | 0,99 | 47,42 | 131,03 |
STCP | 0,92 | 140,52 | 300,32 |
На рис. 6 приведены расчетные данные для откликов при использовании разных модификаций протокола ТСР.
Рис. 6. Сравнение функций отклика для разных протоколов
ICMPv6 используется узлами IPv6 для сообщений об ошибках при обработке пакетов, и для выполнения других функций уровня Интернет, таких как диагностика (ICMPv6 "ping") и сообщение об участии в мультикастинг группах. Протокол ICMPv6 является интегрированной частью IPv6 и должен реализовываться каждым узлом, поддерживающим IPv6.
20.2. Общий формат сообщений
Сообщения ICMPv6 образуют два класса: сообщения об ошибках и информационные сообщения. Сообщения об ошибках идентифицируются по нулю в старшем бите поля тип. Таким образом, сообщения об ошибках могут иметь код поля тип от 0 до 127; информационные сообщения имеют коды поля тип от 128 до 255.
В данном документе определены форматы для следующих сообщений ICMPv6:
Сообщения об ошибках ICMPv6:
1 destination unreachable (место назначения недоступно)
2 packet too big (пакет слишком велик)
3 time exceeded (время превышено)
4 parameter problem (проблема с параметрами)
Информационные сообщения ICMPv6:
128 echo request (Запрос эхо)
129 echo reply (Эхо-отклик)
130 group membership query (запрос участия в группе)
131 group membership report (отчет об участии в группе)
132 group membership reduction (сокращение числа участников в группе)
Каждое сообщение ICMPv6 начинается с заголовка IPv6, за которым следует нуль или более заголовков расширения IPv6. Заголовок ICMPv6 идентифицируется кодом следующего заголовка 58 в предыдущем заголовке. (Заметим: этот код отличается от значения, принятого для ICMP IPv4.)
Сообщения ICMPv6 имеют следующий общий формат (рис. 4.4.1.1.33):
Рис. 4.4.1.1.33. Общий формат сообщений ICMPv6
Поле тип указывает на тип сообщения. Его значение определяет формат последующих данных.
Поле код зависит от типа сообщения. Оно используется для создания дополнительного уровня структуризации сообщения. Поле контрольная сумма используется для обнаружения повреждений сообщения ICMPv6 и заголовка IPv6.
Узел отправитель сообщения ICMPv6 должен определить IPv6-адреса отправителя и получателя до вычисления контрольной суммы.
Если узел имеет более одного уникастного адреса, то он должен выбрать адрес отправителя следующим образом:
Если сообщение является откликом на сообщение, полученное по одному из уникаст адресов, адресом отправителя должен стать именно этот адрес.
Если сообщение является откликом на мультикаст- или эникаст-сообщение группе, в которую входит данный узел, адресом отправителя должен стать никастный адрес интерфейса, откуда пришло сообщение-первопричина отклика.
Если сообщение является откликом на сообщение, посланное по адресу, который не принадлежит данному узлу, в качестве адреса отправителя следует выбрать уникаст адрес, принадлежащий узлу и обещающий наибольшую диагностическую полезность. Например, если сообщение является откликом на операцию переадресации пакета, которая не может быть завершена успешно, в качестве адреса отправителя должен быть взят уникаст-адрес интерфейса, переадресация на который не удалась.
В противном случае, должна быть просмотрена таблица маршрутизации узла и выяснено, какой интерфейс должен быть использован для достижения места назначения сообщения. Уникастный адрес этого интерфейса и должен быть выбран в качестве адреса отправителя.
Контрольная сумма является 16-битным дополнением по модулю 1 суммы всего сообщения ICMPv6, начиная с поля тип сообщения ICMPv6, дополненного полями псевдозаголовка IPv6. Код поля следующий заголовок для псевдозаголовка выбирается равным 58. (Заметим: включение псевдозаголовка в контрольную сумму ICMPv6 является изменением по отношению к протоколу IPv4; обоснование причин этого см. в [IPv6]). Перед вычислением контрольной суммы поле контрольная сумма обнуляется.
Приложения должны следовать следующим правилам при обработке сообщений ICMPv6 (из [RFC-1122]):
Если получено сообщение о неизвестной ошибке ICMPv6, оно должно быть передано верхнему уровню.
Если получено информационное сообщение ICMPv6 неизвестного типа, оно должно быть выброшено.
Каждое ICMPv6 сообщение об ошибке (тип < 128) включает в себя целиком или частично IPv6 пакет, вызвавший ошибку, при условии, что сообщение об ошибке превысит 576 октетов.
В тех случаях, когда протокол интернет-уровня нуждается в передаче сообщения об ошибке ICMPv6 вышерасположенному уровню, тип протокола верхнего уровня извлекается из исходного пакета (содержащегося в теле сообщения об ошибке ICMPv6) и используется для выбора соответствующего протокола верхнего уровня при последующей обработке сообщения об ошибке.
Если исходный пакет имеет необычно большое число заголовков расширения, возможно, что тип протокола верхнего уровня может отсутствовать в сообщении ICMPv6, из-за укорочения исходного пакета до уровня 576 октетов. В этом случае сообщение об ошибке отбрасывается после обработки уровня IPv6.
Сообщение об ошибке ICMPv6 не должно посылаться в качестве результата получения:
(e.1) сообщения об ошибке ICMPv6, или
(e.2) пакета, направленного по IPv6 мультикаст-адресу (существует два исключения из этого правила: (1) сообщения packet too big - пакет слишком велик) - чтобы позволить скорректировать MTU прохода, и (2) сообщения parameter problem (проблема с параметрами), Код 2, оповещающий о нераспознанной опции), или
(e.3) мультикастинг-пакета канального уровня, (исключения пункта e.2 применимы и здесь), или
(e.4) широковещательного пакета канального уровня, (исключения пункта e.2 применимы и здесь), или
(e.5) пакета, чей адрес отправителя не однозначно определяет какой-то узел, например, не специфицированный адрес IPv6, мультикаст-адрес IPv6 или эникаст-адрес.
(f) Наконец, узел IPv6 должен ограничить частоту посылки сообщений об ошибке, если адресат на них не реагирует. Это ограничит загрузку канала.
Существует много способов ограничения частоты посылки сообщений, например:
(f.1) Таймерный метод. Передача сообщений производится не чаще, чем раз за указанное число T миллисекунд.
(f.2) Метод полосы пропускания. Сообщения об ошибке должны занимать не более определенной доли F полосы пропускания канала.
Ограничивающие параметры (например, T или F в вышеприведенных примерах) должны задаваться узлом со значениями по умолчанию (напр., T = 1 сек, и F = 2%, не 100%!).
20.3. Сообщения об ошибках ICMPv6
Рисунок 4.4.13.2. Формат SNMP-сообщений, вкладываемых в UDP-дейтограммы
Incoming-Call-Connected (ICCN) является управляющим сообщением, посылаемым от LAC к LNS в ответ на полученное сообщение ICRP. Оно является третьим сообщением из трех сообщений обмена, используемых для установления сессий в пределах L2TP-туннеля.
ICCN используется для индикации того, что ICRP принято, на вызов получен ответ, а L2TP-сессия должна перейти в состояние “установлена”. Оно также предоставляет дополнительную информацию LNS о параметрах, используемых для вызова, на который получен ответ (параметры, которые не всегда быть доступны в момент посылки ICRQ).
Следующие AVP должны присутствовать в ICCN:
Тип сообщения (Message Type)
Скорость обмена в канале ((Tx) Connect Speed)
Тип кадрового обмена (Framing Type)
Следующие AVP могут присутствовать в ICCN:
Initial Received LCP CONFREQ
Последнее посланное LCP CONFREQ
Последнее полученное LCP CONFREQ
Тип Proxy Authen
Имя Proxy Authen
Приглашение Proxy Authen
Прокси Authen ID
Отклик прокси Authen
ID частной группы
Скорость обмена соединения (Rx Connect Speed)
Необходима нумерация (Sequencing Required)
Рис. 4.4.1.1.37. Сообщение запрос эхо
Поля IPv6:
Адрес места назначения - любой легальный IPv6-адрес
Поля ICMPv6:
Тип 128
Код 0
Идентификатор. Идентификатор, который помогает друг с другом связать запрос эхо и эхо-отклик. Может равняться нулю.
Номер по порядку
Номер по порядку имеет целью связать друг с другом запрос эхо и эхо-отклик. Может равняться нулю.
Информация. Нуль или более октетов произвольных данных.
Описание
Каждый узел должен реализовать функцию эхо-отклика ICMPv6 при получении запроса эхо. Узлу следует также предоставить пользовательский интерфейс для посылки запросов эхо и получения эхо-откликов для целей диагностики.
Формат сообщения эхо-отклик идентичен формату запроса эхо (рис. 20.5).
Поля IPv6:
Адрес места назначения копируется из поля адрес отправителя пакета запрос эхо.
Поля ICMPv6:
Тип 129
Код 0
Идентификатор. Идентификатор из исходного запроса эхо (echo request).
Номер по порядку. Номер по порядку из исходного запроса эхо.
Информация. Данные из исходного запроса эхо.
Описание
Каждый узел должен иметь встроенную функцию отклика ICMPv6, которая получает запросы эхо и посылает соответствующие эхо-отклики. Узел должен также реализовать интерфейс прикладного уровня для посылки запросов эхо и получения эхо-откликов для диагностических целей.
Адрес отправителя эхо-отклика, посылаемого в ответ на уникастный запрос эхо должен быть тем же самым, что и адрес места назначения в запросе эхо.
Эхо-отклик должен быть послан в ответ на запрос эхо, посланный по мультикастному адресу. Адрес отправителя в отклике должен быть уникастным адресом, принадлежащим интерфейсу, через который был получен мультикастный запрос эхо.
Информация, полученная в ICMPv6 сообщении запроса эхо, должна быть полостью возвращена без модификации в ICMPv6 эхо-отклике, если эхо-отклик не превысит MTU обратного прохода, в противном случае пакет укорачивается.
Оповещение верхнего уровня
Сообщения эхо-отклик должны передаваться пользовательскому интерфейсу ICMPv6, если соответствующий запрос эхо исходит не из IP-уровня.
[1] | Mockapetris, P., "Domain Names - Concepts and Facilities", STD13, RFC 1034, USC/Information Sciences Institute, November 1987. |
[2] | Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035, USC/Information Sciences Institute, November 1987. |
[3] | Hinden, R., and S. Deering, Editors, "IP Version 6 Addressing Architecture", RFC 1884, Ipsilon Networks, Xerox PARC, December 1995. |
[4] | Gilligan, R., and E. Nordmark, "Transition Mechanisms for IPv6 Hosts and Routers", Work in Progress. |
[ALLOC] | [Rekhter, Y., and T. Li, "An Architecture for IPv6 Unicast Address Allocation", RFC 1887, cisco Systems, December 1995 |
[ANYCST] | [Partridge, C., Mendez, T., and W. Milliken, "Host Anycasting Service", RFC 1546, BBN, November 1993. |
[CIDR] | [Fuller, V., Li, T., Varadhan, K., and J. Yu, "Supernetting: an Address Assignment and Aggregation Strategy", RFC 1338, BARRNet, cisco, Merit, OARnet, June 1992. |
[IPV6] | [Deering, S., and R. Hinden, Editors, "Internet Protocol, Version 6 (IPv6) Specification", RFC 1883, Xerox PARC, Ipsilon Networks, December 1995. |
[IPv6-ADDR] | [Hinden, R., and S. Deering, Editors, "IP Version 6 Addressing Architecture", RFC 1884, Ipsilon Networks, Xerox PARC, December 1995. |
[IPv6-DISC] | [Narten, T., Nordmark, E., and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", Work in Progress |
[MULT] | [Deering, S., "Host Extensions for IP multicasting", STD 5, RFC 1112, Stanford University, August 1989 |
[NSAP] | [Carpenter, B., Editor, "Mechanisms for OSIN SAPs, CLNP and TP over IPv6", Work in Progress. |
[RFC-791] | [Postel, J., "Internet Protocol", STD 5, RFC 791, USC/Information Sciences Institute, September 1981. |
[RFC-792] | [Postel, J., "Internet Control Message Protocol", STD 5, RFC 792, USC/Information Sciences Institute, September 1981 |
[RFC-1112] | [Deering, S., "Host Extensions for IP Multicasting", STD 5, RFC 1112, Stanford University, August 1989. |
[RFC-1122] | [Braden, R., "Requirements for Internet Hosts -Communication Layers", STD 3, RFC 1122, USC/Information Sciences Institute, October 1989 |
[RFC-1191] | [Mogul, J., and S. Deering, "Path MTU Discovery", RFC1191, DECWRL, Stanford University, November 1990. |
[RFC-1661] | [Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, Daydreamer, July 1994. |
[RFC-1700] | [Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1700, USC/Information Sciences Institute, October 1994. |
[RFC-1825] | [Atkinson, R., "Security Architecture for the Internet Protocol", RFC 1825, Naval Research Laboratory, August 1995. |
[RFC-1826] | [Atkinson, R., "IP Authentication Header", RFC 1826, Naval Research Laboratory, August 1995. |
[RFC-1827] | [Atkinson, R., "IP Encapsulating Security Protocol (ESP)", RFC 1827, Naval Research Laboratory, August 1995 |
[RFC-1885] | [Conta, A., and S. Deering, "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", RFC 1885, Digital Equipment Corporation, Xerox PARC, December 1995. |
[RFC-1884] | [Hinden, R., and S. Deering, Editors, "IP Version 6 Addressing Architecture", RFC 1884, Ipsilon Networks, Xerox PARC, December 1995 |
[RFC-1933] | [Transition Mechanisms for IPv6 Hosts and Routers. R. Gilligan & E. Nordmark. April 1996 |
[RFC-1970] | [Neighbor Discovery for IP Version 6 (IPv6). T. Narten, E. Nordmark & W. Simpson. August 1996. |
[RFC-1971] | [IPv6 Stateless Address Autoconfiguration. S. Thomson & T. Narten. August 1996. |
[RFC-1972] | [A Method for the Transmission of IPv6 Packets over Ethernet Networks. M. Crawford. August 1996. |
[RFC-2019] | [Transmission of IPv6 Packets Over FDDI. M. Crawford. October 1996. |
[RFC-2030] | [Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI. D. Mills. October 1996. |
[RFC-2080] | [RIPng for IPv6. G. Malkin, R. Minnear. January 1997. |
[RFC-2133] | [Basic Socket Interface Extensions for IPv6. R. Gilligan, S. Thomson, J. Bound, W. Stevens. April 1997. |
Реализация RSVP нуждается в следующей поддержке со стороны механизма маршрутизации узла. Запрос маршрута
Для пересылки сообщений Path и PathTear процесс RSVP должен быть способен запрашивать процесс маршрутизации с целью получения маршрутных данных.
Ucast_Route_Query( [ SrcAddress, ] DestAddress,
Notify_flag ) -> OutInterface
Mcast_Route_Query( [ SrcAddress, ] DestAddress,
Notify_flag )
-> [ IncInterface, ] OutInterface_list
В зависимости от протокола маршрутизации запрос может зависеть или нет от SrcAddress, т.е., от IP-адреса ЭВМ-отправителя, который является также IP-адресом источника сообщения. IncInterface характеризует интерфейс, через который ожидается прибытие пакета. Некоторые мультикастные протоколы маршрутизации могут не выдавать этот адрес. Если флаг Notify_flag = True, блок маршрутизации отправит сообщение о непреднамеренном изменении маршрута, если такое изменение произойдет.
Мультикастный маршрутный запрос может вернуть пустой список OutInterface_list, если за оговоренным маршрутизатором нет ни одного получателя. Запрос маршрутной информации может вернуть сообщение `No such route' (такой маршрут отсутствует) возможно, в результате временной рассогласованности (например, сообщение Path или PathTear для запрошенного маршрута не дошло). В любом случае локальное состояние должно быть актуализовано так, как это требуется в запросе, который не может быть переслан далее. Сообщение об изменении маршрута
При маршрутном запросе с флагом Notify_flag = True, процесс маршрутизации может послать асинхронное сообщение процессу RSVP, который уведомляет об изменении определенного маршрута.
Ucast_Route_Change( ) -> [ SrcAddress, ] DestAddress,
OutInterface
Mcast_Route_Change( ) -> [ SrcAddress, ] DestAddress,
[ IncInterface, ] OutInterface_list Обнаружение списка интерфейсов
RSVP должен быть способен запоминать, какой реальный и виртуальный интерфейсы являются активными, а также их IP-адреса.
Должна быть предусмотрена возможность логической дезактивации интерфейса для RSVP. Когда интерфейс дезактивирован, сообщения Path не должны проходить через данный интерфейс, если сообщение RSVP получено, оно должно быть отброшено (возможно, с соответствующей записью в журнале операций).
Структура реального интерфейса может зависеть от операционной системы. Некоторые из вызовов предполагают асинхронную присылку информации. Регистрация сессии
Вызов: SESSION( DestAddress , ProtocolId, DstPort
[ , SESSION_object ]
[ , Upcall_Proc_addr ] ) -> Session-id
Этот вызов инициирует RSVP обработку сессии, заданной DestAddress, ProtocolId и, возможно, номером порта DstPort. В случае успеха вызов SESSION возвращает локальный идентификатор сессии Session-id, который может использоваться при последующих вызовах.
Параметр Upcall_Proc_addr определяет адрес вызова процедуры получения кода ошибки или информации о событии. Параметр SESSION_object включен для организации механизма поддержки более общего описания сессии ("обобщенный порт назначения"). Обычно SESSION_object опускается. Определение отправителя
Вызов: SENDER( Session-id
[ , Source_Address ] [ , Source_Port ]
[ , Sender_Template ]
[ , Sender_Tspec ] [ , Adspec ]
[ , Data_TTL ] [ , Policy_data ] )
Отправитель использует этот вызов, чтобы определить или модифицировать атрибуты информационного потока. Первое обращение к SENDER для регистрации сессии как `Session-id' заставит RSVP начать рассылку сообщений Path для данной сессии; последующие вызовы будут модифицировать информацию о проходе.
Параметры SENDER интерпретируются следующим образом: Source_Address. Это адрес интерфейса через который будут посылаться данные. Если этот параметр пропущен, будет использоваться интерфейс по умолчанию. Этот параметр необходим для ЭВМ с двумя и более сетевыми интерфейсами.Source_Port. Это UDP/TCP порт, через который будут посылаться данные.Sender_Template. Этот параметр включен для поддержки механизма более общего описания отправителя ("обобщенный порт источника"). Обычно этот параметр может быть опущен.Sender_Tspec. Этот параметр описывает трафик потока; смотри [RFC 2210].Adspec. Этот параметр может быть специфицирован для инициализации вычисления свойств QoS вдоль пути; смотри [RFC 2210].Data_TTL.
Это IP TTL параметр, который несут в себе информационные пакеты. Он необходим, чтобы гарантировать условие, при котором сообщения Path не будут попадать за пределы зоны мультикастинг-сессии.Policy_data. Это опционный параметр несет в себе управляющую информацию для отправителя. Эта информация может задаваться системной службой и для приложения может быть недоступной.RESERVE
Вызов: RESERVE( session-id, [ receiver_address , ]
[ CONF_flag, ] [ Policy_data, ]
style, style-dependent-parms )
Получатель использует этот вызов, для того чтобы осуществить или модифицировать резервирование для сессии `session-id'. Первое обращение RESERVE инициирует периодическую передачу сообщений Resv. Последующие вызовы RESERVE могут служить для модификации параметров предыдущих обращений.
Опционный параметр `receiver_address' может использоваться получателем в маршрутизаторе или ЭВМ с несколькими сетевыми интерфейсами; это IP-адрес одного из интерфейсов узла. Флаг CONF_flag должен быть установлен, если желательно подтверждение резервирования. Параметр `Policy_data' специфицирует управляющие данные получателя, в то время как параметр `style' указывает на стиль резервирования. Остальные параметры зависят от стиля; обычно они соответствуют спецификациям фильтра и flowspecs. Отбой
Вызов: RELEASE( session-id )
Этот вызов удаляет состояние RSVP для сессии, указанной в session-id. Узел затем шлет соответствующие сообщения отмены (teardown) и прекращает рассылку сообщений обновления для session-id. Вызовы Error/Event (ошибка/событие)
Общая форма вызова имеет вид:
Обращение: <Upcall_Proc>( ) -> session-id, Info_type,
information_parameters
"Upcall_Proc" представляет собой процедуру, чей адрес был дан при вызове SESSION. Это обращение может произойти асинхронно в любое время после вызова SESSION до вызова RELEASE и служит для индикации ошибки или события.
В настоящее время имеется пять типов обращений, отличающихся параметром Info_type. Выбор информационных параметров зависит от типа.
1. Info_type = PATH_EVENT
Обращение Path Event приводит к тому, что получение первого сообщения Path для данной сессии, указывает приложению получателя на наличие, по крайней мере, одного отправителя или на изменение состояние прохода.
Обращение (отклик): <Upcall_Proc>( ) -> session-id,
Info_type = PATH_EVENT,
Sender_Tspec, Sender_Template
[ , Adspec ] [ , Policy_data ]
Это обращение выдает спецификации Sender_Tspec, Sender_Template, Adspec и управляющую информацию из запроса Path.
2. Info_type = RESV_EVENT
Обращение Resv Event запускается в результате получения первого сообщения RESV, или как следствие модификации предшествующего состояния резервирования для данной сессии.
Обращение (отклик): <Upcall_Proc>( ) -> session-id,
Info_type = RESV_EVENT,
Style, Flowspec, Filter_Spec_list
[ , Policy_data ]
`Flowspec' – эффективное значение QoS, которое получено. Заметим, что сообщение Resv (стиль FF) может вызвать несколько обращений RESV_EVENT, по одному для каждого дескриптора потока.
3. Info_type = PATH_ERROR
Событие Path Error индицирует ошибку в информации отправителя, которая была специфицирована в запросе SENDER.
Обращение (отклик): <Upcall_Proc>( ) -> session-id,
Info_type=PATH_ERROR,
Error_code , Error_value ,
Error_Node , Sender_Template
[ , Policy_data_list ]
Параметр Error_code определяет ошибку, а Error_value может нести в себе некоторую дополнительную (возможно системно-зависимую) информацию об ошибке. Параметр Error_Node специфицирует IP-адрес узла, который обнаружил ошибку. Параметр Policy_data_list, если он присутствует, содержит любые объекты POLICY_DATA из неудачного сообщения Path.
4. Info_type = RESV_ERR
Событие Resv Error указывает на ошибку в сообщении резервирования, в формирование которого приняло участие данное приложение.
Обращение (отклик): <Upcall_Proc>( ) -> session-id,
Info_type = RESV_ERROR,
Error_code , Error_value ,
Error_Node , Error_flags ,
Flowspec, Filter_spec_list
[ , Policy_data_list ]
Параметр Error_Node специфицирует IP- адрес узла, который обнаружил данное событие.
Имеется два флага Error_flags:
- InPlace
Этот флаг может быть равен 1 при ошибке контроля доступа для индикации наличия резервирования в узле, где произошла ошибка. Этот флаг устанавливается при ошибке и транспортируется сообщениями ResvErr.
- NotGuilty
Этот флаг может быть равен 1 при ошибке контроля доступа для индикации того, что запрошенная получателем спецификация flowspec оказалась меньше той, которая вызвала ошибку. Этот флаг устанавливается API получателя.
Filter_spec_list и Flowspec содержат соответствующие объекты из ошибки дескриптора потока. List_count специфицирует число FILTER_SPECS в списке Filter_spec_list. Параметр Policy_data_list содержит любые объекты POLICY_DATA из сообщения ResvErr.
5. Info_type = RESV_CONFIRM
Событие Подтверждение указывает, что получено сообщение ResvConf.
Обращение (отклик): <Upcall_Proc>( ) -> session-id,
Info_type = RESV_CONFIRM,
Style, List_count,
Flowspec, Filter_spec_list
[ , Policy_data ]
Параметры интерпретируются также как и для отклика Resv Error.
Хотя сообщения RSVP, указывающие на события path или resv могут приходить периодически, API должно послать соответствующие асинхронные отклики приложению только на первое из них или при изменении полученной информации. Все события, сопряженные с ошибками или подтверждениями должны доводиться до сведения приложения.
36. Интерфейс управления трафиком RSVP
Трудно представить общий интерфейс для управления трафиком, так как детали установления резервирования сильно зависят от технологии реализации канального уровня в интерфейсе.
Объединение RSVP-резервирований необходимо из-за мультикастной доставки данных, при которой информационные пакеты размножаются для отправки последующим узлам. В каждой такой точке размножения, RSVP должен объединять запросы резервирования от последующих узлов путем выбора “максимума” их спецификаций flowspecs. В данном маршрутизаторе или ЭВМ может присутствовать несколько таких точек объединения/размножения.
1. IP-уровень
Мультикастная IP рассылка выполняет разветвление потока на IP-уровне. В этом случае RSVP должен объединять резервирования, соответствующих выходных интерфейсов для последующей отправки запроса резервирования далее.
2. Сеть
Размножение пакетов может иметь место и после узла, например, в широковещательных сетях, в переключателях канального уровня или системе маршрутизаторов, не поддерживающих RSVP. В этих случаях RSVP должен объединять запросы резервирования от ряда предыдущих узлов, для того чтобы выполнить резервирование для одного выходного интерфейса
3. Драйвер канального уровня
В технологиях со множественным доступом размножение пакетов может осуществляться на уровне канального драйвера или сетевого интерфейса.
В общем, эти сложности не влияют на реализацию протокола RSVP, нужно только четко определить какие запросы резервирования следует объединить. Может оказаться желательным организовать реализацию RSVP из двух блоков: ядро, которое выполняет канально-независимую обработку и адаптационный уровень, учитывающий канальную специфику. Выполнение резервирования
Вызов: TC_AddFlowspec( Interface, TC_Flowspec,
TC_Tspec, TC_Adspec, Police_Flags )
-> RHandle [, Fwd_Flowspec]
Параметр TC_Flowspec определяет желательное значение QoS для управления доступом;. Его значение вычисляется как максимум совокупности спецификаций flowspecs для последующих узлов (см. ниже описание вызова Compare_Flowspecs). Параметр TC_Tspec определяет эффективное значение спецификации отправителя Tspec Path_Te. Параметр TC_Adspec задает спецификацию Adspec. Параметр Police_Flags несет в себе три флага E_Police_Flag, M_Police_Flag и B_Police_Flag.
Если данный вызов оказался успешным, он устанавливает новый канал резервирования, соответствующий RHandle; в противном случае, он возвращает код ошибки. Код RHandle используется вызывающей программой для будущих ссылок на это резервирование. Если служба управления трафиком модифицирует flowspec, вызов вернет модифицированный объект Fwd_Flowspec. Модификация резервирования
Вызов: TC_ModFlowspec( Interface, RHandle, TC_Flowspec,
TC_Tspec, TC_Adspec, Police_flags )
[ -> Fwd_Flowspec ]
Этот вызов используется для модификации существующего резервирования. TC_Flowspec передается блоку контроля разрешения. Если разрешения нет, текущая спецификация flowspec остается в силе. Соответствующие спецификации фильтров, если таковые имеются, остаются не затронутыми. Другие параметры определены также как и в TC_AddFlowspec. Если система модифицирует flowspec, вызов вернет также модифицированный объект Fwd_Flowspec. Уничтожение спецификации Flowspec
Вызов: TC_DelFlowspec( Interface, RHandle )
Этот вызов ликвидирует существующее резервирование, включая спецификацию flowspec и все сопряженные спецификации фильтров. Добавление спецификации фильтра
Вызов: TC_AddFilter( Interface, RHandle,
Session , FilterSpec ) -> FHandle
Этот вызов добавляет новую спецификацию фильтра для резервирования, заданного RHandle. Запрос посылается после успешного вызова TC_AddFlowspec. Этот вызов возвращает дескриптор фильтра FHandle. Уничтожение спецификации фильтра
Вызов: TC_DelFilter( Interface, FHandle )
Этот вызов используется для удаления какого-либо фильтра, идентифицируемого FHandle. Модификация OPWA
Вызов: TC_Advertise( Interface, Adspec,
Non_RSVP_Hop_flag ) -> New_Adspec
Этот вызов используется при OPWA и служит для вычисления выходной спецификации New_Adspec для заданного интерфейса. Битовый флаг Non_RSVP_Hop_flag должен устанавливаться в случае, когда демон RSVP обнаруживает, что предшествующий узел содержит один или более маршрутизаторов, не поддерживающих RSVP. TC_Advertise вставит эту информацию в New_Adspec для оповещениястить обнаружения такого узла. Запрос резервирования
Обращение (отклик): TC_Preempt() -> RHandle, Reason_code
Для того чтобы выдать новый запрос резервирования, модули контроля разрешения и управления могут осуществить выделение квот для одного или двух существующих резервирований. Это вызовет отклик TC_Preempt() на каждое привилегированное RSVP резервирование, отправляя дескриптор резервирования RHandle и субкод причины.
RSVP в маршрутизаторе имеет интерфейсы для управления трафиком, а в ЭВМ - интерфейсы для приложений (т.е., API), а также для управления трафиком (если такой контроль предусмотрен).
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
Виртуальная сеть виртуальных сетей - Интернет является самой большой и самой популярной сетью. Можно смело утверждать, что эта сеть сохранит это лидерство в ближайшие годы. Привлекательность сети не только в том, что это единая среда общения людей, находящихся в разных странах и на разных континентах. Интернет предоставляет все более широкий спектр услуг. Это и информационно-поисковые системы, телефония, аудио и видео письма, доставляемые за считанные секунды в любую точку мира (где имеется Интернет), видеоконференции, электронные журналы, службы новостей, дистанционное обучение, банковские операции и многое, многое другое. Интернету предстоит мучительная процедура перехода на 128-битовые адреса (IPv6), но по ее завершении можно ожидать дальнейшего расширения списка услуг. Уже сегодня Интернет стал средой, предоставляющей возможность целевой рекламы и дистанционной торговли. Уже в начале следующего века сети станут самым мощным средством массовой информации. Но для решения всех этих проблем в этой сфере еще очень много надо сделать. Современные поисковые системы, несмотря на впечатляющие успехи, требуют существенного улучшения эффективности, много надо сделать для того, чтобы Интернет пришел в каждую квартиру.
Сегодня Интернет использует многие десятки протоколов. Если сюда добавить протоколы физического уровня, то их число превысит сотню. На уровне локальных сетей наиболее распространены различные разновидности Ethernet, а также Token Ring и некоторые другие. Особенно велико разнообразие протоколов межсетевого обмена. Здесь помимо PPP используется FDDI, X.25, ISDN, ATM, SDH, Fibre Channel и пр.. На транспортном уровне в Интернет работают протоколы UDP (без установления соединения) и TCP (с установлением соединения). Это два принципиально разных подхода к передаче данных. В обоих случаях и передатчик и приемник имеют индивидуальные IP-адреса и порты. Но в случае TCP они ассоциируются в соединители (socket) - две пары IP-адрес-порт и прием/передача в рамках одной сессии происходит по схеме точка-точка.
Для UDP же допускается возможность передачи одновременно нескольким приемникам (мультикастинг) и прием данных от нескольких передатчиков в рамках одной и той же сессии. Протокол TCP используется для поточной передачи данных, при которой доставка гарантируется на протокольном уровне. Это обеспечивается обязательным подтверждением получения каждого пакета TCP. Напротив, протокол UDP не требует подтверждения получения. В этом случае, как правило, исключается также и фрагментация пакетов, так как пакеты при схеме без установления соединения никак не связаны между собой. По этим причинам UDP в основном служит для передачи мультимедийных данных, где важнее своевременность, а не надежность доставки. Протокол TCP используется там, где важна надежная, безошибочная доставка информации (файловый обмен, передача почтовых сообщений и WEB-технология).
Схема без установления соединения привлекательна также тем, что позволяет при передаче данных от исходного источника к большому числу приемников минимизировать общий трафик. Если бы для этой цели использовался протокол TCP, то при N приемниках надо было бы сформировать N виртуальных каналов и транспортировать N идентичных пакетов (рис. 4.4.1). В случае UDP от передатчика до точки разветвления передается только один пакет, что уменьшает загрузку данного участка в N раз (рис. 4.4.2). Причем аналогичная экономия может быть реализована и по пути к очередной точке разветвления (смотри описание протокола мультикастинг-маршрутизации PIM).
При работе в IP-среде протокол L2TP должен обеспечить UDP-инкапсуляцию, описанную в 8.1. Другие конфигурации (возможно соответствующие формату со сжатием заголовков) могут быть определены и доступны в качестве конфигурируемой опции.
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
В Интернет используется много различных типов пакетов, но один из основных - IP-пакет (RFC-791), именно он вкладывается в кадр Ethernet и именно в него вкладываются пакеты UDP, TCP. IP-протокол предлагает ненадежную транспортную среду. Ненадежную в том смысле, что не существует гарантии благополучной доставки IP-дейтаграммы. Алгоритм доставки в рамках данного протокола предельно прост: при ошибке дейтаграмма выбрасывается, а отправителю посылается соответствующее ICMP-сообщение (или не посылается ничего). Обеспечение же надежности возлагается на более высокий уровень (UDP или TCP). Формат IP-пакетов показан на рисунке 4.4.1.1.
Рис. 4.4.1.1. Формат дейтаграммы Интернет
Поле версия характеризует версию IP-протокола (например, 4 или 6). Формат пакета определяется программой и, вообще говоря, может быть разным для разных значений поля версия. Только размер и положение этого поля незыблемы. Поэтому в случае изменений длины IP-адреса слишком тяжелых последствий это не вызовет. Понятно также, что значение поля версия во избежании непредсказуемых последствий должно контролироваться программой. HLEN - длина заголовка, измеряемая в 32-разрядных словах, обычно заголовок содержит 20 октетов (HLEN=5, без опций и заполнителя). Поле полная длина определяет полную длину IP-дейтаграммы (до 65535 октетов), включая заголовок и данные. Одно-октетное поле тип сервиса (TOS - type of service) характеризует то, как должна обрабатываться дейтаграмма. Это поле делится на 6 субполей:
Субполе Приоритет предоставляет возможность присвоить код приоритета каждой дейтаграмме. Значения приоритетов приведены в таблице (в настоящее время это поле не используется).
0 Обычный уровень
1 Приоритетный
2 Немедленный
3 Срочный
4 Экстренный
5 ceitic/ecp
6 Межсетевое управление
7 Сетевое управление
Формат поля TOS определен в документе RFC-1349. Биты C, D, T и R характеризуют пожелание относительно способа доставки дейтаграммы. Так D=1 требует минимальной задержки, T=1 - высокую пропускную способность, R=1 - высокую надежность, а C=1 – низкую стоимость.
TOS играет важную роль в маршрутизации пакетов. Интернет не гарантирует запрашиваемый TOS, но многие маршрутизаторы учитывают эти запросы при выборе маршрута (протоколы OSPF и IGRP). В таблице 4.4.1.1 приведены рекомендуемые значения TOS.
Табл. 4.4.1.1. Значения TOS для разных протоколов
Процедура | Минимал. задержка | Максим. пропускная способность | Максим. надежность | Минимал. стоимость | Код TOS |
FTP управление FTP данные | |||||
1 | 0 | 0 | 0 | 0x10 | |
0 | 1 | 0 | 0 | 0x08 | |
TFTP | 1 | 0 | 0 | 0 | 0x10 |
DNS UDP TCP | 1 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0x10 | |
0 | 0 | 0 | 0 | 0x00 | |
telnet | 1 | 0 | 0 | 0 | 0x10 |
ICMP | 0 | 0 | 0 | 0 | 0x00 |
IGP | 0 | 0 | 1 | 0 | 0x04 |
SMTP управление SMTP данные | |||||
1 | 0 | 0 | 0 | 0x10 | |
0 | 1 | 0 | 0 | 0x08 | |
SNMP | 0 | 0 | 1 | 0 | 0x04 |
NNTP | 0 | 0 | 0 | 1 | 0x02 |
Селектор класса | DSCP |
Приоритет 1 | 001000 |
Приоритет 2 | 010000 |
Приоритет 3 | 011000 |
Приоритет 4 | 100000 |
Приоритет 5 | 101000 |
Приоритет 6 | 110000 |
Приоритет 7 | 111000 |
Код протокола Интернет | Сокращенное название протокола | Описание |
0 | - | Зарезервировано |
1 | ICMP | Протокол контрольных сообщений [rfc792] |
2 | IGMP | Групповой протокол управления [rfc1112] |
3 | GGP | Протокол маршрутизатор-маршрутизатор [RFC-823] |
4 | IP | IP поверх IP (инкапсуляция/туннели) |
5 | ST | Поток [rfc1190] |
6 | TCP | Протокол управления передачей [RFC-793] |
7 | UCL | UCL |
8 | EGP | Протокол внешней маршрутизации [RFC-888] |
9 | IGP | Протокол внутренней маршрутизации |
10 | BBN-MON | BBN-RCC мониторирование |
11 | NVP-II | Сетевой протокол для голосовой связи [RFC-741] |
12 | PUP | PUP |
13 | ARGUS | argus |
14 | Emcon | emcon |
15 | Xnet | Перекрестный сетевой отладчик [IEN158] |
16 | Chaos | Chaos |
17 | UDP | Протокол дейтаграмм пользователя [RFC-768] |
18 | MUX | Мультиплексирование [IEN90] |
19 | DCN-MEAS | DCN измерительные субсистемы |
20 | HMP | Протокол мониторирования ЭВМ (host [RFC-869]) |
21 | PRM | Мониторирование при передаче пакетов по радио |
22 | XNS-IDP | Xerox NS IDP |
23 | Trunk-1 | Trunk-1 |
24 | Trank-2 | Trunk-2 |
25 | Leaf-1 | Leaf-1 |
26 | Leaf-2 | Leaf-2 |
27 | RDP | Протокол для надежной передачи данных [RFC-908] |
28 | IRTP | Надежный TP для Интернет [RFC-938] |
29 | ISO-TP4 | iso транспортный класс 4 [RFC-905] |
30 | Netblt | Массовая передача данных [RFC-969] |
31 | MFE-NSP | Сетевая служба MFE |
32 | Merit-INP | Межузловой протокол Merit |
33 | SEP | Последовательный обмен |
34 | не определен | |
35 | IDRP | Междоменный протокол маршрутизации |
36 | XTP | Xpress транспортный протокол |
37 | DDP | Протокол доставки дейтаграмм |
38 | IDPR-CMTP | IDPR передача управляющих сообщений |
39 | TP++ | TP++ транспортный протокол |
40 | IL | IL-транспортный протокол |
41 | SIP | Простой Интернет-протокол |
42 | SDRP | Протокол маршрутных запросов для отправителя |
43 | SIP-SR | SIP исходный маршрут |
44 | SIP-Frag | SIP-фрагмент |
45 | IDRP | Интер-доменный маршрутный протокол |
46 | RSVP | Протокол резервирования ресурсов канала |
47 | GRE | Общая инкапсуляция маршрутов |
49 | BNA | BNA |
50 | SIPP-ESP | SIPP ESЗ |
52 | I-NLSP | Интегрированная система безопасности сетевого уровня |
53 | Swipe | IP с кодированием |
54 | NHRP | nbma протокол определения следующего шага |
55-60 | не определены | |
61 | Любой внутренний протокол ЭВМ | |
62 | CFTP | CFTP |
63 | Любая локальная сеть | |
64 | Sat-Expak | Satnet и Expak |
65 | MIT-Subn | Поддержка субсетей MIT |
66 | RVD | Удаленный виртуальный диск MIT |
67 | IPPC | IPPC |
68 | Любая распределенная файловая система | |
69 | Sat-Mon | Мониторирование Satnet |
70 | не определен | |
71 | IPCV | Базовая пакетная утилита |
75 | PVP | Пакетный видео-протокол |
76 | BRsat-Mon | Резервное мониторирование Satnet |
78 | Wb-mon | Мониторирование Expak |
79 | Wb-expak | Широкополосная версия Expak |
80 | ISO-IP | iso Интернет протокол |
88 | IGRP | IGRP (Cisco) - внутренний протокол маршрутизации |
89 | OSPFIGP | OSPFIGP - внутренний протокол маршрутизации |
92 | MTP | Транспортный протокол мультикастинга |
101-254 | не определены | |
255 | зарезервировано |
Значение поля класс опции | Описание |
0 | Дейтограмма пользователя или сетевое управление |
1 | Зарезервировано для будущего использования |
2 | Отладка и измерения (диагностика) |
3 | Зарезервировано для будущего использования |
Класс опции | Номер опции | Длина описания | Назначение |
0 | 0 | - | Конец списка опций. Используется, если опции не укладываются в поле заголовка (смотри также поле "заполнитель") |
0 | 1 | - | Никаких операций (используется для выравнивания октетов в списке опций) |
0 | 2 | 11 | Ограничения,связанные с секретностью (для военных приложений) |
0 | 3 | * | Свободная маршрутизация. Используется для того, чтобы направить дейтаграмму по заданному маршруту |
0 | 7 | * | Запись маршрута. Используется для трассировки |
0 | 8 | 4 | Идентификатор потока. Устарело. |
0 | 9 | * | Жесткая маршрутизация. Используется, чтобы направить дейтаграмму по заданному маршруту |
2 | 4 | * | Временная метка Интернет |
routing tables destination | gateway | flags | refcnt | use | interface |
193.124.225.72 | 193.124.224.60 | ughd | 0 | 61 | le0 |
192.148.166.1 | 193.124.224.60 | ughd | 0 | 409 | le0 |
193.124.226.81 | 193.124.224.37 | ughd | 0 | 464 | le0 |
192.160.233.201 | 193.124.224.33 | ughd | 0 | 222 | le0 |
192.148.166.234 | 193.124.224.60 | ughd | 1 | 3248 | le0 |
193.124.225.66 | 193.124.224.60 | ughd | 0 | 774 | le0 |
192.148.166.10 | 193.124.224.60 | ughd | 0 | 621 | le0 |
192.148.166.250 | 193.124.224.60 | ughd | 0 | 371 | le0 |
192.148.166.4 | 193.124.224.60 | ughd | 0 | 119 | le0 |
145.249.16.20 | 193.124.224.60 | ughd | 0 | 130478 | le0 |
192.102.229.14 | 193.124.224.33 | ughd | 0 | 13206 | le0 |
default | 193.124.224.33 | ug | 9 | 5802624 | le0 |
193.124.224.32 | 193.124.224.35 | u | 6 | 1920046 | le0 |
193.124.134.0 | 193.124.224.50 | ugd | 1 | 291672 | le0 |
u | Маршрут работает (up). |
g | Путь к маршрутизатору (gateway), если этот флаг отсутствует, адресат доступен непосредственно. |
h | Маршрут к ЭВМ (host), адрес места назначения является полным адресом этой ЭВМ (адрес сети + адрес ЭВМ). Если флаг отсутствует, маршрут ведет к сети, а адрес места назначения является адресом сети. |
d | Маршрут возник в результате переадресации. |
m | Маршрут был модифицирован с помощью переадресации. |
Значение флага | Назначение |
0 | Записать только временные метки; опустить ip-адреса. |
1 | Записать перед каждой временной меткой ip-адрес (как в формате на предыдущем рисунке). |
3 | ip-адреса задаются отправителем; маршрутизатор записывает только временные метки, если очередной IP-адрес совпадает с адресом маршрутизатора |
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
Особенность IP-протокола (опция принудительной маршрутизации) позволяет переадресовывать IP-дейтограммы определенным узлам сети. На первый взгляд эта возможность может показаться совершенно бесполезной, ведь существуют механизмы динамической маршрутизации, которые несравненно эффективнее и надежней обеспечивают обмен данными. Но тем не менее существуют приложения, где принудительная маршрутизация на IP-уровне представляет возможности недоступные для традиционных решений. Это прежде всего сети, работающие с использованием протоколов IPX/SPX (Novell), где традиционная маршрутизация не предусмотрена. Для подключений удаленных серверов, находящихся вне локальной сети, здесь используется технология так называемых IP-туннелей. При реализации этой технологии IPX-пакеты инкапсулируются в IP-дейтограммы и доставляются в соответствие с протоколами TCP/IP. Процедура инкапсуляции осуществляется специальным драйвером (IPtunnel; использует протокол IPxodi), который работает так, как если бы он был драйвером аппаратного сетевого интерфейса. При этом необходимо модифицировать конфигурационный файл net.cfg (См., например, ).
;Техника IP-туннелей может оказаться иногда полезной и при администрировании маршрутизации, так как метрика внешних протоколов маршрутизации может не учитывать пропускную способность каналов и некоторые другие факторы, например, QoS. В этом случае IP-дейтограммы вкладываются в IP-дейтограммы отправителем (начало туннеля) и извлекаются оттуда в конце туннеля. Конец туннеля не обязательно совпадает с местом назначения пакетов. Такая простая схема туннелирования может порождать некоторые проблемы (см. рис. 4.4.1.2.1).
Рис. 4.4.1.2.1 Схема туннелирования пакетов. Квадратными скобками отмечено вложение пакетов. В числителе приводится адрес места назначения, в знаменателе адрес отправителя. Адрес вне скобок – адрес места назначения.
Из рисунка видно, что простой туннель может породить асимметричный маршрут, при котором путь туда и обратно не совпадают.
Чтобы такого не произошло, применяется техника “маскарада” (masquerading). Для этого “маршрутизатор конца туннеля” должен извлечь вложенный пакет (как это он делает и на рис. 4.4.1.2.1) и вложить его в пакет с адресом места назначения IP3, указав при этом в качестве отправителя себя (IP3/IP2[IP3/IP1]). Тогда конечный адресат IP3 будет посылать отклики по адресу IP2, а не IP1. А уже маршрутизатор конца туннеля будет пересылать их первоисточнику запроса IP1.
В последнее время техника туннелей нашла применение при построении так называемых прокси-серверов, популярность которых связана с возможностью заметно сократить внешний (часто зарубежный) трафик за счет запоминания в дисковом буфере файлов, наиболее часто запрашиваемых клиентами. Заметно упрощает решение данной задачи многие современные маршрутизаторы, которые могут отфильтровывать запросы по определенным портам и переадресовывать их прокси-серверу (см. рис. 4.4.1.2.2).
Алгоритмы IPv6 включают в себя механизм (для ЭВМ и маршрутизаторов) организации туннелей для IPv6 пакетов через маршрутную инфраструктуру IPv4. Узлам IPv6, которые используют этот метод, присваиваются специальные IPv6 уникастные адреса, которые в младших 32 битах содержат адрес IPv4. Этот тип адреса называется "IPv4-compatible IPv6 address" и имеет формат, изображенный на рис. 4.4.1.1.5:
Рис. 4.4.1.1.5
Определен и второй тип IPv6 адреса, который содержит внутри IPv4 адрес. Этот адрес используется для представления IPv6 адресов узлам IPv4 (тем, что не поддерживают IPv6). Этот тип адреса называется "IPv4-mapped IPv6 address" и имеет формат показанный на рис. 4.4.1.1.6:
Рис. 4.4.1.1.6
Соответствие IPX и IPv6 адресов показано ниже на рис. 4.4.1.1.8:
Рис. 4.4.1.1.8
Исходящие вызовы инициируются LNS и заставляют LAC реализовать вызов. Для исходящих вызовов используется три сообщения: Outgoing-Call-Request, Outgoing-Call-Reply, и Outgoing-Call-Connected. LNS посылает Outgoing-Call-Request, специфицирующий телефонный номер партнера, субадрес и другие параметры. LAC должен реагировать на сообщение Outgoing-Call-Request откликом Outgoing-Call-Reply, так как LAC определяет, что имеется возможность реализовать вызов, который должен быть административно авторизован. Например, разрешено ли LNS осуществлять международные телефонные вызовы? Если для исходящего вызова осуществлено соединение, LAC посылает LNS сообщение Outgoing-Call-Connected, характеризующее окончательный результат попытки вызова.
Переадресация сообщений RSVP должна исключать возможность образования петель. В спокойном состоянии сообщения Path и Resv направляются каждому узлу только раз за период обновления. Это исключает зацикливание пакетов, но имеется еще возможность петель "автоматического обновления". Такие петли автоматического обновления сохраняют состояние "вечно", даже если оконечные узлы прекращают их обновление до тех пор, пока получатели не покинут мультикастинг-группу и/или отправители прекратят посылку сообщения Path. С другой стороны сообщения об ошибке и об аннулировании (teardown) посылаются немедленно и могут служить причиной возникновения циклов.
Рассмотрим каждый тип сообщения. Сообщения Path. Эти сообщения направляются точно тем же путем, что и информационные IP-пакеты. Следовательно, не должно возникать циклов для сообщений типа Path (за исключением циклов, связанных с переходными процессами установления маршрута).Сообщения PathTear. Эти сообщения используют ту же маршрутизацию, что и сообщения Path и, следовательно, не могут образовывать циклов.Сообщения PathErr. Так как сообщения Path не образуют циклов, они формируют состояние прохода, которое описывает обратный маршрут для каждого из отправителей, который не может иметь петель. Сообщения PathErr всегда направлены определенному отправителю и, следовательно, не могут образовывать циклов. Сообщения Resv. Эти сообщения направлены определенному отправителю и не могут иметь циклов. Однако, сообщения Resv с произвольным выбором отправителя (wildcard) (стиль WF) имеет потенциал для запуска циклов обновления.Сообщения ResvTear. Хотя сообщения ResvTear маршрутизируются также как и сообщения Resv. При повторном проходе по петле состояние будет отсутствовать (аннулировано), и любое сообщение ResvTear будет отброшено.Сообщения ResvErr. Эти сообщения для стиля резервирования WF могут вызывать зацикливание по той же причине, что и для сообщений Resv.Сообщения ResvConf. Эти сообщения направляются фиксированному уникастному получателю и не могут приводить к циклам.
> | |||||
Интерфейс IА | Интерфейс IБ | Интерфейс IВ | |||
Получает | Отправляет | Получает | Отправляет | Получает | Отправляет |
WF([S1,S2,S3]) | WF([S4]) | WF([S2,S3,S4]) | WF([S1]) | WF([S4,S1]) | WF([S2,S3]) |
Порядковые номера определены в заголовке L2TP для управляющих сообщений и опционно для информационных (смотри раздел 3.1). Они используются для организации надежной транспортировки управляющих сообщений (смотри раздел 5.8) и опционно информационных сообщений. Каждый партнер поддерживает отдельную нумерацию для управляющего соединения и для каждой информационной сессии в пределах туннеля.
В отличие от канала управления L2TP, информационный канал L2TP не использует нумерацию сообщений для повторной пересылки. Скорее информационные сообщения могут использовать порядковые номера для детектирования потерь пакетов и/или восстановления исходной последовательности пакетов, которые могут быть перемешаны при транспортировке. LAC может потребовать, чтобы порядковые номера присутствовали в информационных сообщениях, посредством AVP необходимого упорядочения (смотри раздел 4.4.6). Если эта AVP присутствует при установлении сессии, порядковые номера должны присутствовать всегда. Если эта AVP отсутствует, упорядочивание сообщений находится под управлением LNS. Сервер LNS управляет разрешением и запрещением использования порядковых номеров путем посылки информационных сообщений с или без порядковых номеров на протяжении всей сессии. Таким образом, если LAC получает информационное сообщение без порядкового номера, он должен прекратить посылку сообщений с порядковыми номерами. Если LAC получает информационное сообщение с порядковым номером, он должен начать посылку информационных сообщений с порядковыми номерами. Если LNS разрешает нумерацию сообщений после предыдущего запрещения в ходе сессии, порядковые номера устанавливаются в соответствии с состоянием их последнего применения.
LNS может инициировать запрет нумерации сообщений в любое время в ходе сессии (включая первое информационное сообщение). Рекомендуется, чтобы для соединений, где возможна потеря или изменение порядка пакетов, нумерация сообщений была всегда разрешена. Запрещение нумерации возможно, только когда риск ошибки считается приемлемым. Например, если PPP-сессия при туннелировании не использует каких-либо посторонних протоколов или сжатия данных и работает только с IP (как это определено в ходе процедуры инициализации), тогда LNS может запретить нумерацию пакетов так как IP сам следит за их порядком.
Сессия RSVP определяется в норме тремя параметрами: DestAddress, ProtocolId, DstPort. Здесь DstPort является полем порта назначения UDP/TCP. DstPort может быть опущен (сделан равным нулю), если ProtocolId специфицирует протокол, который не имеет поля порта места назначения.
RSVP допускает любое значение для ProtocolId. Однако, реализации оконечных систем RSVP могут знать об определенных значениях для этого поля и в частности значения для UDP и TCP (17 и 6 соответственно). Оконечная система может выдать сигнал ошибки приложению, которая: специфицирует ненулевое значение DstPort для протокола, который не имеет портов типа UDP/TCP, илиспецифицирует нулевое значение DstPort для протокола, который имеет порты, специфицированные для UDP/TCP.
Спецификации фильтра и шаблоны отправителя определяют пару: SrcAddress, SrcPort, где SrcPort поле UDP/TCP порта. В некоторых случаях SrcPort может быть опущен (установлен равным нулю). Существуют следующие правила использования нулевого значения полей DstPort и/или SrcPort в RSVP.
1. Порты назначения должны быть взаимосогласованными.
Состояния прохода и резервирования для одного и того же DestAddress и ProtocolId должны иметь свои значения DstPort, которые все равны нулю или все не равны нулю. Нарушение этого условия в узле является ошибкой "конфликт портов назначения (Conflicting Dest Ports)".
2. Правило портов назначения.
Если DstPort в описании сессии равен нулю, все поля SrcPort, используемые для этой сессии, также должны быть равны нулю. При этом предполагается, что протокол не имеет портов типа UDP/TCP. Нарушение этого условия в узле вызовет ошибку "Bad Src Ports".
3. Порты источников должны быть взаимосогласованы.
ЭВМ-отправитель не должна посылать состояния прохода со значением SrcPort равным так и неравным нулю. Нарушение этого условия вызовет ошибку "Conflicting Sender Port". Заметим, что протокол не допускает произвольного назначения номеров портов (wildcard), т.е., нулевой порт не может соответствовать ненулевому порту.
Эникаст-адрес IPv6 является адресом, который приписан нескольким интерфейсам (обычно принадлежащим разным узлам), при этом пакет, посланный по эникастному адресу, будет доставлен ближайшему интерфейсу в соответствии с метрикой протокола маршрутизации.
Эникастные адреса выделяются из уникастного адресного пространства, и используют один из известных уникастных форматов. Таким образом эникастные адреса синтаксически неотличимы от уникастных адресов. Когда уникастный адрес приписан более чем одному интерфейсу, он превращается в эникастный адрес и узлы, которым он приписан, должны быть сконфигурированы так, чтобы распознавать этот адрес.
Для любого эникастного адреса существует адресный префикс P, который определяет топологическую область, где находятся все соответствующие ему интерфейсы. В пределах области, заданной P, каждый член эникастной (anycast) группы должен быть объявлен, как отдельный вход в маршрутной системе; вне области, заданной P, эникастный адрес может быть занесен в маршрутную запись для префикса p.
Заметим, что в худшем случае префикс P эникастной группы (anycast set) может быть нулевым, т.e., члены группы могут не иметь никакой топологической локальности. В этом случае эникастный адрес должен объявляться как отдельная маршрутная единица (separate routing entry) по всему Интернет, что представляет собой серьезное ограничение, так как число таких "глобальных" эникастных адресов не может быть большим.
Одним ожидаемым приложением эникастных адресов является идентификация набора маршрутизаторов, принадлежащих Интернет сервис провайдеру. Такие адреса в маршрутном заголовке IPv6 могут использоваться в качестве промежуточных, чтобы обеспечить доставку пакета через определенного провайдера или последовательность провайдеров. Другим возможным приложением может стать идентификация набора маршрутизаторов, связанных с определенной субсетью, или набора маршрутизаторов, обеспечивающих доступ в определенный домен.
Существует ограниченный опыт широкого применения эникастных Интернет адресов, некоторые возможные осложнения и трудности рассмотрены в [anycst]. Имеются следующие ограничения при использовании эникастных IPv6 адресов:
Эникастный адрес не может использоваться в качестве адреса отправителя в ipv6 пакете.
Эникастный адрес не может быть приписан ЭВМ IPv6, таким образом, он может принадлежать только маршрутизатору.
При работе с ЭВМ, имеющими несколько сетевых интерфейсов, требуется выполнение ряда специальных правил. К такого рода устройствам относятся и маршрутизаторы, которые поддерживают локальные прикладные программы.
Приложение, исполняемое на такой машине, должно явно указывать через какой интерфейс осуществляется передача данного информационного потока, для того чтобы заменить интерфейс, заданный по умолчанию системой. Посылка данных
Приложение отправителя использует API вызов для декларации характеристик его информационного потока для RSVP. Этот вызов может опционно включать локальный IP-адрес отправителя. Если он установлен приложением, этот параметр должен быть адресом интерфейса для отправки информационных пакетов, в противном случае, используется системный интерфейс по умолчанию.
Процесс RSVP ЭВМ посылает затем приложению сообщения Path только через специфицированный интерфейс.